THERMAL SCIENCE
International Scientific Journal
A NEW SCALING LAW HEAT CONDUCTION PROBLEM ASSOCIATED WITH THE KORCAK SCALING LAW
ABSTRACT
In this article, we address a new model for the scaling law heat conduction problem by using the scaling law vector calculus associated with the Korcak scaling law. The scaling law heat conduction equations are discussed in detail. The scaling law vector calculus formulas are proposed as an efficiently mathematical tool to describe the Korcak scaling -law phenomena in heat transport system.
KEYWORDS
PAPER SUBMITTED: 2021-06-04
PAPER REVISED: 2021-07-21
PAPER ACCEPTED: 2021-07-25
PUBLISHED ONLINE: 2022-04-09
THERMAL SCIENCE YEAR
2022, VOLUME
26, ISSUE
Issue 2, PAGES [1047 - 1059]
- Marsden, J. E., Tromba, A., Vector Calculus, Macmillan, London, UK, 2003
- Green, G., An Essay on the Application of Mathematical Analysis to the Theories of Electricity and Magnetism, Notingham, London, UK, 1828
- Gauss, C. F., Theoria Attractionis Corporum Sphaeroidicorum Ellipticorum Homogeneorum Methodo novo Tractata, Commentationes Societatis Regiae Scientiarum Gottingensis Recentiores, 2 (1813), pp. 2-5
- Ostrogradsky, M. V., Note sur la Théorie de la Chaleur, Mémoires présentés à l'Académie impériale des Sciences de St. Petersbourg, 6 (1831), 1, pp. 123-138 (Presented in 1828)
- Ostrogradsky, M. V., Mémoire sur L'equilibre et le Mouvement des Corps Elastiques, Mémoires présen-tés à l'Académie impériale des Sciences de St. Petersbourg, 6 (1831), 1, pp. 39-53 (Presented in 1828)
- Stokes, G. G., A Smith's Prize Paper, The Cambridge University Press, Cambridge, UK, 1854
- Hankel, H., Zur allgemeinen Theorie der Bewegung der Flussigkeiten, Dieterische University, Buch-druckerei, 1861
- Maxwell, J. C., A Treatise on Electricity and Magnetism, Clarendon Press, Oxford, UK, 1873
- Eddington, A. S., The Mathematical Theory of Relativity, The Cambridge University Press, Cambridge, UK, 1923
- Love, A. E. H., A Treatise on the Mathematical Theory of Elasticity, The Cambridge University Press, Cambridge, UK, 1906
- Carslaw, H. S., Introduction to the Mathematical Theory of the Conduction of Heat in Solids, Dover Publication, Mineola, N. Y., USA, 1906
- Navier, C. L., Mémoire sur les lois du mouvement des fluides, Mémoires de l'Académie Royale des Sci-ences de l'Institut de France, 6 (1822), 1822, pp. 375-394
- Stockes, G. G., On the Effect of the Internal Friction of Fluids on the Motion of Pendulums, Transac-tions of the Cambridge Philosophical Society, 9 (1851), 2, pp. 8-106
- Reynolds, O., The Sub-Mechanics of the Universe, Cambridge University Press, Cambridge, UK, 1903
- Frisch, U., Turbulence, Cambridge University Press, New York, NY, 1995
- Mandelbrot, B., How Long is the Coast of Britain? Statistical Self-Similarity and Fractional Dimen-sion, Science, 156 (1967), 3775, pp. 636-638
- Richardson, L., F., Atmospheric Diffusion Shown on a Distance-Neighbour Graph, Proceedings of the Royal Society A, 110 (1926), 756, pp. 709-737
- Korcak, J., Geopolitické základy Československa. Jeho kmenové oblasti (The Geopolitic Foundations of Czechoslovakia. Its Tribal Areas), Prague, Orbis, 1938
- Yang, X.-J., New Insight into the Fourier-like and Darcy-Like Models in Porous Medium, Thermal Sci-ence, 24 (2020), 6A, pp. 3847-58
- Yang, X. J., On Traveling-Wave Solutions for the Scaling law Telegraph Equations, Thermal Sci-ence, 24 (2020), 6B, pp. 3861-3868
- Yang, X. J., et al., On the Theory of the Fractal Scaling law Elasticity, Meccanica (2021), July, pp. 1-13
- Yang, X. J., Theory and Applications of Special Functions for Scientists and Engineers, Springer Singa-pore, New York, USA, 2021
- Rognon, P., et al., A Scaling Law for Heat Conductivity in Sheared Granular Materials, EPL (Europhys-ics Letters), 89 (2010), 5, ID 58006
- Volkov, A. N., Zhigilei, L. V., Scaling Laws and Mesoscopic Modeling of Thermal Conductivity in Carbon Nanotube Materials, Physical Review Letters, 104 (2010), 21, ID 215902