THERMAL SCIENCE
International Scientific Journal
ANOMALOUS DIFFUSION MODELS WITH RESPECT TO MONOTONE INCREASING FUNCTIONS
ABSTRACT
In this article we propose the anomalous diffusion models with respect to mono-tone increasing functions. The Riesz-type fractional order derivatives operators with respect to power-law function are considered based on the extended work of Riesz. Two models for the anomalous diffusion processes are given to describe the special behaviors in the complex media
KEYWORDS
PAPER SUBMITTED: 2021-08-12
PAPER REVISED: 2021-08-26
PAPER ACCEPTED: 2021-09-02
PUBLISHED ONLINE: 2022-04-09
THERMAL SCIENCE YEAR
2022, VOLUME
26, ISSUE
Issue 2, PAGES [1009 - 1016]
- Fick, A., Ueber Diffusion, Annalen der Physik, 170 (1855), 1, pp. 59-86
- Fick, A. V., On Liquid Diffusion, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 10 (1855), 63, pp. 30-39
- Richardson, L. F., Atmospheric Diffusion Shown on a Distance-Neighbour Graph, Proceedings of the Royal Society A, 110 (1926), 756, pp. 709-737
- Bouchaud, J. P., Georges, A., Anomalous Diffusion in Disordered Media: Statistical Mechanisms, Mod-els and Physical Applications, Physics Reports, 195 (1990), 4-5, pp. 127-293
- Alcazar-Cano, N., Delgado-Buscalioni, R., A General Phenomenological Relation for the Subdiffusive Exponent of Anomalous Diffusion in Disordered Media, Soft Matter, 14 (2018), 48, pp. 9937-9949
- Metzler, R., et al., Anomalous Diffusion Models and Their Properties: Non-stationarity, non-ergodicity, and ageing at the centenary of single particle Tracking, Physical Chemistry Chemical Physics, 16 (2014), 44, pp. 24128-24164
- Knackstedt, M. A., et al., Diffusion in Model Disordered Media, Physical Review Letters, 75 (1995), 4, pp. 653-656
- Jeon, J. H., et al., Anomalous Diffusion of Phospholipids and Cholesterols in a Lipid Bilayer and Its Or-igins, Physical Review Letters, 109 (2012), 18, ID188103-5
- Yang, X. J., et al., Nonlinear Dynamics for Local Fractional Burgers' Equation Arising in Fractal Flow, Nonlinear Dynamics, 84 (2016), 1, pp. 3-7
- Chen, W., et al., Anomalous Diffusion Modeling by Fractal and Fractional Derivatives, Computers & Mathematics with Applications, 59 (2010), 5, pp. 1754-1758
- Riesz, M., L'intégrale de Riemann-Liouville et le Problème de Cauchy, Acta Mathematica, 81 (1949), Dec., pp. 1-222
- Yang, X. J., General Fractional Derivatives: Theory, Methods and Applications, CRC Press, Boka Ra-ton, Fla., USA, 2019
- Samko, S. G., et al., Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach, Yverdon, Switzerland, 1993
- Yang, X. J., et al., General Fractional Derivatives with Applications in Viscoelasticity, Academic Press, New York, USA, 2020
- Herrmann, R., Fractional Calculus: An Introduction For Physicists, World Scientific, Singapore, 2014
- Fernandez, A., et al., On the Fractional Laplacian of a Function with Respect to Another Function, On-line first, hal.archives-ouvertes.fr/hal-03318401, 2021