International Scientific Journal


Present investigation is concerned with mixed convection flow of Williamson nanoliquid over an unsteady slandering stretching sheet. Aspects of non-linear thermal radiation, Brownian diffusion, and thermophoresis effects are addressed. Non-linear stretching surface of varying thickness induce the flow. Novel features of combined zero mass flux and convective conditions are accounted. Use of appropriate transformations results into the non-linear ODE. Computations for the convergent solutions are provided. Graphs are designed for interpretations to quantities. Nusselt number and surface drag are computationally inspected. Our computed results indicate that attributes of nanoparticles and non-linear thermal radiation enhance the temperature distribution.
PAPER REVISED: 2021-03-05
PAPER ACCEPTED: 2021-03-20
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2022, VOLUME 26, ISSUE Issue 2, PAGES [1405 - 1419]
  1. S. U. S. Choi and J. A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles: The Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition, San Francisco, USA, ASME, FED 231/MD, 66 (1995) 99-105.
  2. J. Buongiorno, Convective transport in nanofluids, J. Heat Transfer Trans. ASME 128 (2006) 240.
  3. R. J. Tiwari, M.K. Das, Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids, Int. J. Heat Mass Transfer 50 (2007) 2002-2018.
  4. H. F. Oztop and E. Abu-Nada, Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids, Int. J. Heat Fluid Flow 29 (2008) 1326-1336.
  5. D. A. Nield and A. V. Kuznetsov, The Cheng-Minkowycz problem for natural convective boundary-layer flow in a porous medium saturated by a nanofluid, Int. J. Heat Mass Transfer 52 (2009) 5792-5795.
  6. I. Ullah, T. Hayat, A. Alsaedi and S. Asghar, Dissipative flow of hybrid nanoliquid (aluminum alloy nanoparticles) with nonlinear thermal radiation, Physica Scripta, 94 (2019) 125708.
  7. J. Raza, M. Farooq, F. Mebarek-Oudina and B. Mahanthesh, Multiple Slip Effects on MHD non-Newtonian nanofluid flow Over a nonlinear permeable elongated sheet. Numerical and statistical analysis, Multidiscipline Mod. Mat. Structures, 15 (2019) 913-931.
  8. T. Hayat, I. Ullah, T. Muhammad and A. Alsaedi, Magnetohydrodynamic (MHD) threedimensional flow of second grade nanofluid by a convectively heated exponentially stretching surface, J. Mol. Liq., 220 (2016) 1004-12.
  9. K. L. Hsiao, Stagnation electrical, MHD nanofluid mixed convection with slip boundary on a stretching sheet, Appl. Thermal Eng., 98 (2016) 850-861.
  10. T. Hayat, I. Ullah, A. Alsaedi and S. Asghar, Flow of magneto Williamson nanoliquid towards stretching sheet with variable thickness and double stratification, Radiat. Phys. Chem., 152 (2018) 151-157.
  11. J. Raza, F. Mebarek-Oudina and B. Mahanthesh, Magnetohydrodynamic flow of nano Williamson fluid generated by stretching plate with multiple slips. Multidiscipline Modeling in Materials and Structures, 15 (2019) 871-894.
  12. A. Wakif, Z. Boulahia, and R. Sehaqui, Numerical study of the onset of convection in a Newtonian nanofluid layer with spatially uniform and non-uniform internal heating. J. Nanofluids, 6 (2017) 136-148.
  13. Y. Lin, L. Zheng, X. Zhang, L. Ma and G. Chen, MHD pseudo-plastic nanofluid unsteady flow and heat transfer in a finite thin film over stretching surface with internal heat generation, Int. J. Heat Mass Transfer, 84 (2015) 903-911.
  14. B. Mahanthesh, G. Lorenzini, F. Mebarek-Oudina, and I. L Animasaun, Significance of exponential space- and thermal-dependent heat source effects on nanofluid flow due to radially elongated disk with Coriolis and Lorentz forces, J. Therm. Anal. Calorim., 144, (2020) 37-44
  15. N. Acharya, K. Das and P. K. Kundu, Framing the effects of solar radiation on magneto-hydrodynamics bioconvection nanofluid flow in presence of gyrotactic microorganisms, J. Mol. Liq. 222 (2016) 28-37.
  16. K. Mohammadi and H. Khorasanizadeh, A review of solar radiation on vertically mounted solar surfaces and proper azimuth angles in six Iranian major cities, Renew. Sustain. Energy Rev. 47 (2015) 504-518.
  17. J. Raza, F. Mebarek-Oudina, and A.J. Chamkha, Magnetohydrodynamic flow of molybdenum disulfide nanofluid in a channel with shape effects. Multidiscipline Modeling in Materials and Structures, 15 (2019) 737-757.
  18. T. Hayat, I. Ullah, M. Farooq and A. Alsaedi, Analysis of non-linear radiative stagnation point flow of Carreau fluid with homogeneous-heterogeneous reactions, Microsyst. Technol., 25 (2019) 1243-1250.
  19. S. Kuhn and P. Rudolf von Rohr, Experimental study of heat flux in mixed convective flow over solid waves, Exp. Fluids 44 (2008) 973-984.
  20. J. D. Jackson, M. A. Cotton and B. P. Axcell, Studies of mixed convection in vertical tubes, Int. J. Heat. Fluid Flow. 10 (1989) 2-15.
  21. L. Martínez-Suastegui and C. Trevino, Particle image velocimetry measurements for opposing flow in a vertical channel with a differential and asymmetric heating condition, Exp. Therm. Fluid Sci. 32 (2007) 262-275.
  22. T. Hayat, I. Ullah, A. Alsaedi and B. Ahmad, Simultaneous effects of non-linear mixed convection and radiative flow due to Riga-plate with double stratification, J. Heat Transfer, 140 (2018) 102008.
  23. B. C. Sakiadis Boundary-layer behavior on continuous solid surfaces: I. Boundary-layer equations for two-dimensional and axisymmetric flow, AIChE Journal 7 (1961) 2628.
  24. K. Vajravelu, Viscous flow over a nonlinearly stretching sheet, Appl. Math. Comput., 124 (2001) 281-288.
  25. I. Ullah, T. Hayat, A.Alsaedi and Habib M. Fardoun, Numerical treatment of melting heat transfer and entropy generation in stagnation point flow of hybrid nanomaterials (SWCNT-MWCNT/engine oil), Mod. Phys. Lett. B, (2021) 2150102.
  26. M. A. Ismael, A. K. Hussein, F. Mebarek-Oudina and Lioua Kolsi, Effect of driven sidewalls on mixed convection in an open trapezoidal cavity with a channel. J. Heat Transfer 142 (2020) .
  27. L. L. Lee, Boundary layer over a thin needle, 820 (2014) DOI:10.1063/1.1762194.
  28. T. Fang, J. Zhang, Y. Zhong, Boundary layer flow over a stretching sheet with variable thickness, Appl. Math. Comput., 218 (2012) 7241-7252.
  29. T. Hayat, M. Farooq, A. Alsaedi and Falleh Al-Solamy, Impact of Cattaneo-Christov heat flux in the flow over a stretching sheet with variable thickness, AIP Advances, 5 (2015) 087159.
  30. T. Hayat, I. Ullah, A. Alsaedi and M. Farooq, MHD flow of Powell-Eyring nanofluid over a non-linear stretching sheet with variable thickness, Res. Phys., 7 (2017) 189-196.
  31. M., Javed, A. A. Alderremy, M. Farooq, A. Anjum, S. Ahmad and M. Y. Malik, Analysis of activation energy and melting heat transfer in MHD flow with chemical reaction. Eur. Phys. J. Plus, 134 (2019) 256.
  32. S. J. Liao, On the homotopy analysis method for nonlinear problems, Appl. Math. Comput., 147 (2004) 499-513.
  33. A. Malvandi, F. Hedayati and G. Domairry, Stagnation point flow of a nanofluid toward an exponentially stretching sheet with nonuniform heat generation/absorption, J. Thermodynamics, 2013 (2013) 764827.
  34. T. Hayat, I. Ullah, B. Ahmed and A. Alsaedi, MHD mixed convection flow of third grade liquid subject to non-linear thermal radiation and convective condition, Results Phys., (2017)
  35. S. Hamrelaine, F. Mebarek-Oudina and M. R. Sari, Analysis of MHD Jeffery Hamel Flow with Suction/Injection by Homotopy Analysis Method, Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, Vol. 58, No. 02, pp. 173-186. 2019.
  36. T. Hayat, I. Ullah, A. Alsaedi and M. Waqas, Double stratified flow of nanofluid subject to temperature based thermal conductivity and heat source, Therm. sci., 00 (2018) 242-242
  37. T. Hayat , I. Ullah, A. Alsaedi and B. Ahamd, Mixed convective radiative flow of vicoelastic liquid subject to space dependent internal heat source and chemical reaction, Therm. sci (2018) 287-287
  38. T. Hayat, I. Ullah, M. Waqas and A. Alsaedi , Flow of chemically reactive magneto Cross nanoliquid with temperature-dependent conductivity, Appl Nanosci., 8 (2018) 1453-1460.

© 2024 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence