THERMAL SCIENCE

International Scientific Journal

THE FINITE ELEMENT METHOD ANALYSIS OF TEMPERATURE DISTRIBUTION OF THE FAMA ELECTRON CYCLOTRON RESONANCE MINI-OVEN

ABSTRACT
The mVINIS ion source, a part of FAMA installation at Vinča Institute of Nuclear Sciences, is able to produce multiple charged heavy ion beams through the utilization of vapors created by the process of melting solids inside the miniature oven (mini-oven). The mini-oven that was used previously could only reach the maximum temperature of 800°C, which is far too low for evaporating most metals. For this purpose, a higher operating-temperature of 1500°C was needed. Our study focuses on numerical finite element method analysis of the temperature distribution of newly designed mini-oven.
KEYWORDS
PAPER SUBMITTED: 2021-05-19
PAPER REVISED: 2021-06-05
PAPER ACCEPTED: 2021-06-28
PUBLISHED ONLINE: 2021-07-10
DOI REFERENCE: https://doi.org/10.2298/TSCI210519235T
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2022, VOLUME 26, ISSUE Issue 1, PAGES [175 - 184]
REFERENCES
  1. Dobrosavljević, A., et al., A channel for modification of materials with post-accelerated or decelerated multiply charged ion beams, Nucl. Instrum. Meth. A 597 (2008), 2-3, pp, 136-141.
  2. Efremov, A. A., et al., Design aspects and status of construction of the mVINIS ion source, Rev. Sci. Instrum, 69 (1998), 2, pp. 679-681.
  3. Dobrosavljević, A., et al., Progress report on the mVINIS ion source, Rev. Sci. Instrum., 72 (2000),2, pp. 915- 917.
  4. Dobrosavljević, A., et al., Recent results with the mVINIS ion source, Rev. Sci. Instrum. 75 (2004), 5, pp. 1460-1462.
  5. Efremov, A. A., et al., Upgrading the ECR ion Source within Fama, Nucl. Technol. Radiat. Prot., 33 (2018), 1, pp. 47-52.
  6. Loginov, V. N., et al., Production of intense metal ion beams at the DC-60 cyclotron, J. Instrum., No. 2 (2019), 14, pp. 55-62.
  7. Koivisto, H., et al., The first results with the new JYFL 14 GHz ECR ion source, Nucl. Instrum. Meth. B, 174, (2001), 3, pp. 379-384.
  8. Jovović, J., et al., Mivoc method at the mVINIS ion source, Nucl. Technol. Radiat. Prot., 22 (2007) 2, pp. 10-14.
  9. Loginov V.N., et al., Production of Intense Beams of Lithium, Magnesium, Phosphorus and Calcium Ions by ECR Ion Source at DC-60 Cyclotron, Physics of Particles and Nuclei Letters, 16 (2019), 1, pp. 30-33.
  10. ***,PANTECHNIK,PK10-0501-DT04/Oven Head Technical Datasheet/www.pantechnik.com
  11. Koivisto, H., et al., "Development of metal ion beams and beam transmission at JYFL, Proceedings of HIAT09, Venice, Italy,(2009)
  12. ***, Comsol-multiphysics, www.comsol.com
  13. COOPER, M.G., et al., Thermal contact conductance, International Journal of Heat and Mass Transfer,12 (1969), 3, pp. 279-300.
  14. David R. Lide, ed., CRC Handbook of Chemistry and Physics, CRC Press/Taylor and Francis, Boca Raton, FL,2009
  15. Choong S. K., Thermophysical properties of stainless steels, Argonne National Laboratory, Argone, Illinois. 1975
  16. ***, plansee, www.plansee.com
  17. Michael, F., Radiative heat transfer, Academic Press., 2013
  18. Whitson. М. Е., Handbook of the Infrared Optical Properties of Al2O3, Carbon, MGO and ZrO2. AEROSPACE CORP. 1975
  19. John H. L. IV., and John H. L. V., A Heat Transfer Textbook, Phlogiston Press,2008
  20. Bejan, A., Kraus, A. D., Heat transfer handbook, John Wiley & Sons., New York,2003

2025 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence