THERMAL SCIENCE

International Scientific Journal

HEAT ENHANCEMENT ANALYSIS IN A DIFFERENTIALLY HEATED INCLINED SQUARE ENCLOSURE WITH WATER AND ETHYLENE GLYCOL BASED AL2O3 NANOFLUID

ABSTRACT
This paper investigates the analysis of natural-convection heat enhancement in an inclined square enclosure when filled with water-based nanofluids with left edge wall undergoing heating with consistent heat flux while the right edge wall being cold and other remaining walls are kept adiabatic. The parameters used in this analysis include: solid fraction volume (range from 0-20%), length of the heaters (0.25 cm, 0.50 cm, and 1.0 cm from the left edge), and Rayleigh number (range from 104 to 106 ). The nanolayer thickness ratio was kept at a constant value of 1.0 throughout the analysis. The heat source is found at the center of the left wall. Polynomial differential quadrature equations have been adopted for this analysis for various angles range from 0-90°. As the Rayleigh numbers and particle volume fraction got the much-needed raise, the average count of the heat transfer rate improved too. The length of the heat flux heater has become more prominent parameter that has been affecting the calculated temperature and the flow fields. When the heat flux heater length is pushed to an increasing limit, the heat enhancement rate essentially starts to decline. This happens at the smaller inclination angle, though.
KEYWORDS
PAPER SUBMITTED: 2021-07-09
PAPER REVISED: 2021-08-15
PAPER ACCEPTED: 2021-08-19
PUBLISHED ONLINE: 2021-09-04
DOI REFERENCE: https://doi.org/10.2298/TSCI210709269G
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2021, VOLUME 25, ISSUE Issue 6, PAGES [4383 - 4393]
REFERENCES
  1. Choi, S.U. and Eastman, J.A., Enhancing thermal conductivity of fluids with nanoparticles, Argonne National Lab., IL (United States), (1995)
  2. Keblinski, P., Phillpot, S.R., Choi, S.U.S. & Eastman, J.A., Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids", International Journal of Heat and Mass Transfer, 45(4) (2002), pp. 855-863
  3. Hamilton, R.L. and Crosser, O.K., Thermal conductivity of heterogeneous two-component systems, Industrial & Engineering Chemistry Fundamentals, 1(3) (1962), pp.187-191
  4. J.C. Maxwell-Garnett, "Colours in metal glasses and in metallic films", Philos.Trans. Roy. Soc. A 203 (1904), pp. 385-420
  5. Bruggeman, D. A. G., Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. III. Die elastischen Konstanten der quasiisotropen Mischkörper aus isotropen Substanzen. Annalen Der Physik, 421(2) (1937), pp. 160-178
  6. Wang, B. X., Zhou, L. P., & Peng, X. F., A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles. International Journal of Heat and Mass Transfer, 46(14) (2003), pp. 2665-2672. doi.org/10.1016/S0017-9310(03)00016-4
  7. Yu, W., & Choi, S. U. S., The role of interfacial layers in the enhanced thermal conductivity of nanofluids: A renovated Maxwell model. International Journal of Nanoparticle Research (Vol. 5) (2003).
  8. Khanafer, K., Vafai, K., & Lightstone, M., Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. International Journal of Heat and Mass Transfer, 46(19) (2003), pp. 3639-3653. doi.org/10.1016/S0017-9310(03)00156-X
  9. Jou, R. Y., & Tzeng, S. C. Numerical research of nature convective heat transfer enhancement filled with nanofluids in rectangular enclosures. International Communications in Heat and Mass Transfer, 33(6) (2006), pp. 727-736.
  10. Santra, A. K., Sen, S., & Chakraborty, N, Study of heat transfer augmentation in a differentially heated square cavity using copper-water nanofluid. International Journal of Thermal Sciences, 47(9) (2008), pp. 1113-1122. doi.org/10.1016/j.ijthermalsci.2007.10.005
  11. Hwang, K. S., Lee, J. H., & Jang, S. P., Buoyancy-driven heat transfer of water-based Al2O3 nanofluids in a rectangular cavity. International Journal of Heat and Mass Transfer, 50(19-20) (2007), pp. 4003-4010. doi.org/10.1016/j.ijheatmasstransfer.2007.01.037
  12. Oztop, H. F., & Abu-Nada, E., Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. International Journal of Heat and Fluid Flow, 29(5) (2008), pp. 1326-1336. doi.org/10.1016/j.ijheatfluidflow.2008.04.009
  13. Sarris, I. E., Lekakis, I., & Vlachos, N. S., Natural convection in rectangular tanks heated locally from below. International Journal of Heat and Mass Transfer, 47(14-16) (2004), pp. 3549-3563. doi.org/10.1016/j.ijheatmasstransfer.2003.12.022
  14. Calcagni, B., Marsili, F., & Paroncini, M., Natural convective heat transfer in square enclosures heated from below. Applied Thermal Engineering, 25(16) (2005), pp. 2522-2531. doi.org/10.1016/j.applthermaleng.2004.11.032
  15. Aydin, O., & Yang, W.-J., Natural convection in enclosures with localized heating from below and symmetrical cooling from sides. In International Journal of Numerical Methods for Heat & Fluid Flow (Vol. 10, Issue 5) (2000), # MCB University Press. www.emerald-library.com
  16. Sharif, M. A. R., & Mohammad, T. R., Natural convection in cavities with constant flux heating at the bottom wall and isothermal cooling from the sidewalls. International Journal of Thermal Sciences, 44(9) (2005), pp. 865-878. doi.org/10.1016/j.ijthermalsci.2005.02.006
  17. Cheikh, N. Ben, Beya, B. Ben, & Lili, T., Influence of thermal boundary conditions on natural convection in a square enclosure partially heated from below. International Communications in Heat and Mass Transfer, 34(3) (2007), pp. 369-379. doi.org/10.1016/j.icheatmasstransfer.2006.11.001
  18. Sadeghi, M.S., Anadalibkhah, N., Ghasemiasl, R., Armaghani, T., Dogonchi, A.S., Chamkha, A.J., Ali, H. and Asadi, A., On the natural convection of nanofluids in diverse shapes of enclosures: an exhaustive review. Journal of Thermal Analysis and Calorimetry, (2020), pp.1-22. doi.org/10.1007/s10973-020-10222-y
  19. Sharifpur, M., Giwa, S.O., Lee, K.Y., Ghodsinezhad, H. and Meyer, J.P., Experimental Investigation into Natural Convection of Zinc Oxide/Water Nanofluids in a Square Cavity. Heat Transfer Engineering, (2020), pp.1-13. doi.org/10.1080/01457632.2020.1818384
  20. Khanafer, K., Vafai, K., & Lightstone, M., Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. International Journal of Heat and Mass Transfer, 46(19) (2003), pp. 3639-3653. doi.org/10.1016/S0017-9310(03)00156-X
  21. Ho, C. J., Liu, W. K., Chang, Y. S., & Lin, C. C., Natural convection heat transfer of alumina-water nanofluid in vertical square enclosures: An experimental study. International Journal of Thermal Sciences, 49(8) (2010), pp. 1345-1353. doi.org/10.1016/j.ijthermalsci.2010.02.013
  22. Saghir, M. Z., Ahadi, A., Yousefi, T., & Farahbakhsh, B., Two-phase and single phase models of flow of nanofluid in a square cavity: Comparison with experimental results. International Journal of Thermal Sciences, 100 (2016), pp. 372-380. doi.org/10.1016/j.ijthermalsci.2015.10.005
  23. Eastman, J. A., Choi, S. U. S., Li, S., Yu, W., & Thompson, L. J., Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Applied Physics Letters, 78(6) (2001), pp. 718-720. doi.org/10.1063/1.1341218
  24. Jang, S. P., & Choi, S. U. S., Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Applied Physics Letters, 84(21) (2004), pp. 4316-4318. doi.org/10.1063/1.1756684
  25. Zhu, Y. D., Shu, C., Qiu, J., & Tani, J., Numerical simulation of natural convection between two elliptical cylinders using DQ method. International Journal of Heat and Mass Transfer, 47(4) (2004), pp. 797-808. doi.org/10.1016/j.ijheatmasstransfer.2003.06.005
  26. Ece, M. C., & Büyük, E., The effect of an external magnetic field on natural convection in an inclined rectangular enclosure. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 221(12) (2007), pp. 1609-1622. doi.org/10.1243/09544062JMES743
  27. Kahveci, K, Numerical simulation of natural convection in a partitioned enclosure using PDQ method. International Journal of Numerical Methods for Heat and Fluid Flow, 17(4) (2007), pp. 439-456. doi.org/10.1108/09615530710739194
  28. Kahveci, K., Natural convection in a partitioned vertical enclosure heated with a uniform heat flux. Journal of Heat Transfer, 129(6) (2007), pp. 717-726. doi.org/10.1115/1.2717241
  29. Kahveci, K, A differential quadrature solution of natural convection in an enclosure with a finite-thickness partition. Numerical Heat Transfer; Part A: Applications, 51(10) (2007), pp. 979-1002. doi.org/10.1080/10407790601184371

© 2024 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence