THERMAL SCIENCE
International Scientific Journal
THE SERIES REPRESENTATIONS FOR THE J AND H FUNCTIONS APPLIED IN THE HEAT-DIFFUSION EQUATION
ABSTRACT
In this article the theory of the supertrigonometric and superhyperbolic functions associated with the J and H functions are proposed for the first time. The series representation for the heat-diffusion equations are also given by using the J and H functions. The results are efficient and accurate for the description for the solutions of the PDE in mathematical physics.
KEYWORDS
PAPER SUBMITTED: 2021-05-13
PAPER REVISED: 2021-06-10
PAPER ACCEPTED: 2021-07-25
PUBLISHED ONLINE: 2021-12-24
THERMAL SCIENCE YEAR
2021, VOLUME
25, ISSUE
Issue 6, PAGES [4631 - 4642]
- Andrews, G. E., Askey, R., Roy, R., Special Functions, Cambridge University Press, Cambridge, England, UK, 1999
- Wang, Z. X., Guo, D. R., Special Functions, World Scientific, London, UK, 1989
- Yang, X. J., Theory and Applications of Special Functions for Scientists and Engineers, Springer Singapore, New York, USA, 2021
- Fox, C., The G and H functions as symmetrical Fourier kernels, Transactions of the American Mathematical Society, 98 (1961), 3, pp. 395-429
- Mathai, A. M., et al., The H-Function: Theory and Applications, Springer, New York, USA, 2009
- Yang, X.-J., The Y Function Applied in the Study of an Anomalous Diffusion, Thermal Science, 25 (2021), 6B, pp. 4465-4475
- Euler, L., Introductio in Analysin Infinitorum, Apud Marcum-Michaelem Bousquet & Socios, Bousquet, France, 1748
- Yang, X. J., An Introduction Hypergeometric, Supertrigonometric and Superhyperbolic Functions, Academic Press, New York, USA, 2021
- Mittag-Leffler, G. M., Sur la nouvelle fonction Eα(x) (in French), Comptes Rendus de L'Academie des Sciences Paris, 137 (1903), 2, pp. 554-558
- Wiman, A., Über den Fundamentalsatz in der Teorie der Funktionen Ea(x) (in German), Acta Mathematica, 29 (1905), 1, pp. 191-201
- Prabhakar, T. R., A Singular Integral Equation with a Generalized Mittag Leffler Function in the Kernel, Yokohama Mathematical Journal, 19 (1971), 1, pp. 7-15
- Shukla, A. K., Prajapati, J. C., On a Generalization of Mittag-Leffler Function and Its Properties, Journal of Mathematical Analysis and Applications, 336 (2007), 2, pp. 797-811
- Yang, X. J., A New Integral Transform Operator for Solving the Heat-Diffusion Problem, Applied Mathematics Letters, 64 (2017), Feb., pp. 193-197