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In this article the theory of the supertrigonometric and superhyperbolic functions
associated with the J and H functions are proposed for the first time. The series
representation for the heat-diffusion equations are also given by using the J and
H functions. The results are efficient and accurate for the description for the solu-
tions of the PDE in mathematical physics.
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Introduction

It is well known that the special functions [1, 2] can be structured by using the power
series, infinite products, generating functions, differential, difference, integral, and functional
equations, integral representations, repeated differentiation, trigonometric series, or other series
in the orthogonal functions, having the important applications not only in the field of pure and
applied mathematics but also in the field of mathematical physics [3].

Let us recall the H and J functions, which are defined by means of the Mellin-Barnes
type integrals. In order to introduce the H and J function, we now denote C, R, R., and N as
the sets of the complex, real number, positive real number, and integer numbers, respectively.
Suppose that x € C\{0},i=(-1)"2,¢>1,0<n<p,0<m<gq, {a, b;} € C, and {a, f;} € R..

Let

A(s)=—D§, where Al(s)zﬁl"(bj—ﬁjs), Bl(s)zgl"(l—aj+ajs)
C, (s)zjli[ll“(l—bj+ﬂjs), and D, (s)=j1ill“(aj—ajs)

The Fox H function H',7(x) proposed by Fox [4], is defined by the Mellin-Barnes type
integral [5]:

Y ()= B { {:‘,,‘;}}:H::;; 5 e INORE (n
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where L is the infinite contour in the complex plane, (a certain contour separating the poles of
the two factors in the numerator) with the poles [5]:

b.+/
K== (=1, reNU{o}) 2)
B
and
l—a, +%
k?=a+(j:1, n;KeNu{O}) (3)

j
The J function J’7(x) , proposed by Yang [6], is defined by the Mellin-Barnes type
integral [6]:

P
{a,a}} {aj,aj}l 1
gt |~ 00| B =——[A(s)sds )
' . X

{b.B} {bj’ﬂj}l 2miy
where L is a certain contour separating the poles of the two factors in the numerator with the
poles, given by egs. (2) and (3) [6].

For / € N U {0}, the connection with the H and J functions, investigated by author in
[6], is given:

1o ()= {

By () =20 5 Orag (5)
and
v (1Y oy (l0g )
Hp,q(xj_;( 1) “Up,q (I)F(l+l) (6)
since
v () o (l0g %)
By () =233 ()= ™
and
B () =20 Oy ®)

where L is a certain contour separating the poles of the two factors in the numerator.

Motivated by the Euler formula, given in 1748 Euler [7], and the proposed idea pre-
sented in the published monographs [3, 8], we plan to develop the supertrigonometric and
superhyperbolic functions associated with the J and H functions. The main target of the paper
is to suggest the supertrigonometric and superhyperbolic functions associated with the J and H
functions, and to present a potential application in the heat-diffusion equation.

The special functions: the J and H functions

In this section we investigate the series representations for the J and H functions.
In order to study the series representation of the J function, we now introduce the
kappa function:

V4
9 2 ,. 1 X
e () =t s 0 e ot ’}; =— [A(s)[u(vis)] ds )
b {bj’ﬂj}l 2TEZL
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where the mu function is defined:
u(vss)=log---logs (10)
forseCandov € N.
There exist the following special cases:

— Forv=2
0 l
mn X2 ZKmn 13 (11)
1=0
where
1 x
K (x;S)Z%J'A(s)(logloglogs) ds (12)
L
— Forov =1, we arrive at
o o xl
=2 (52)3; (13)
1=0 .
where
1 x
K (x;2):%J.A(s)(loglogs) ds (14)
L
— There exists
1 1 1 = (xlogs) X!
m,n - A xogstZ_ A dS_ m,n ll
Jp,q (x) zniL (S)e an’L (S){; l! ; ( ) l! (15)
where
=—_[A logs (16)

It is not difficult to find that eq. (15) is the series representation of the J function by
using the kappa function.
In a similar way, it is shown:

!
1 1 1 = (slogx)
H™ (x)=—|A T s =—— | A(s ———|ds 1
0= g AW =] ()[; (1)
where L is a certain contour separating the poles of the two factors in the numerator.
This implies:
10 x
H ZJ . ) (18)

which leads
m,n S m,n (10gx+10gJ’)l
G ()= 300 () 2
and

o [ X I (logx—logy)l
Hp’q ; = ZJP,q (l)—

1=0 I
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It is easy to see that eq. (18) is the series representation of the H function by using the

J function.

The supertrigonometric functions associated with the J function

LetAi€eCandz € C.
With eq. (15) we show:

1
Jmn AX ZKmn ll(/IX)
=0 A
This implies:
mn (- S m,n (i‘[x)l
J P:q (lz.x) = ZK P:q (l’l)

1!

JIi
o

and
1

zz'x ik"“’ ll z'x)
= Iy

The supersine function associated with the J function is defined:
0 x21+1
Tsin ™" (x) =S (=1) & ™" (21 +1;1) ———
()= S R
The supercosine function associated with the J function is defined:
) 21
Jeos ™" (x)= ) (1) & 7" (21
)= T R R
The supertangent function associated with the J function is defined:
Jeos g (x)

t m,n —
S FEAD)

P9

,[Jgngj(x)io]

The supercotangent function associated with the J function is defined:

Jsin 7" (x)
Jcos " (x)

The supercosecant function associated with the J function is defined:

Jeotan " (x) = , [J cos " (x) # O]

m,n 1 m,n
JSeC ( ):W I:JCOS )?50]
The supersecant function associated with the J function is defined:
m,n 1 m,n
Jese " (x ):W [Jsm );tO]

Thus, it is easy to show:

Jcos " (7x)= —[J (irx)+J o (—irx)}

Jsin Z:;’ (rx) = %[J mn (iz'x) —-Jmn (—ifx)]

P.q psq

(19)

(20)

21)

(22)

(23)

24

(25)

(26)

27)

(28)

(29)
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I (irx)=Jcos o (7x)+iJsin o (7x) (30)
I (—irx)=Jcos o (7x)—iJsin o (7x) (31)
Jcos " (—zx) = Jcos " (7x) (32)
Jsin """ (-7x) = =Jsin 7" (7x) (33)
The supertrigonometric functions associated with the H function
By using eq. (7), we see:
S (Ax)
Hy () =230 (0 (34)
This implies:
m,n 17X S m,n (iT.x)l
Hy (¢7) =230 (), (33)
and
> (—iz'x)[
HY” (e77) = 2 (0=, (36)
The supersine function associated with the H function is defined:
s omn ix . ! m,n x21+l
Hisin; (e ):,;(—1) I (2l+1)m (37)
The supercosine function associated with the H function is defined:
m,n ix > m,n le
Heos 7 (¢") = > (=1) Inn (21) (38)
(21)!
The supertangent function associated with the H function is defined:
m,n ix H cos :’; (eix ) smn ix
Htan vy (e )=W, [Hsmm (e )¢0:| (39)
The supercotangent function associated with the H function is defined:
m,n ix H Sin Z:"; (eix) m,n ix
H cotan rq (6 ):W, [HCOSIMJ (e )¢0:| (40)
The supercosecant function associated with the H function is defined
m,n x| _ 1 m,n ix
Hsee 7 (e )—W’ [ Hcos (") #0] (41)
The supersecant function associated with the H function is defined:
m,n ix 1 i.omn ix
Hese (e ):— [Hsm o (e );tOJ (42)

. m,n ix)’
Hsin o (e )
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Thus, we show:

Hcos 2 (¢ ) =2 (¢ )+ 7 (o)
fsin g (¢ = 5.1 ()= 7 (e )
i (¢) = Hoos i (e ) +ilisin ()
H 7 () = Hoos [ (¢ ) ~iHsin 77 ()
Hcos " (™) =Hcos 7 ()
Hsin 7" (7 ) = —Hsin 7" (¢™)

The superhyperbolic functions associated with the J function
With the aid of eq. (15) we get:

Jm;z AX ik_mn ll (lx)
1=0

I
and
m,n m,n ( ﬂx)l
I (=4 ZK (1) T
The superhyperbolic sine function associated with the J function is defined:
21+1
X
,]Isinh'”” K'”" 2[+1;1)
Z (2[ +1)!

The superhyperbolic cosine function associated with the J function is defined:

21

(21)

J]cosh'"" ZK

The superhyperbolic tangent functlon assomated with the J function is defined:

Jcosh mn

h m,n
Jtan p.q ( ) ,]]Slnh m, n( )

[J sinh " (x) # 0]

(43)

(44)

(45)

(46)

(47)

(48)

(49)

(50

(1)

(52)

(53)

The superhyperbolic cotangent function associated with the J function is defined:

Jsinh 22 (1)

tanh " (x) =
oo )= Tt (1)

The superhyperbolic cosecant function associated with the J function is defined:

1

h m,n — s
Jsech (*) Jcosh " (x)

[J cosh ' (x) # 0]

, [J cosh ' (x) # 0]

(54)

(55)
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The superhyperbolic secant function associated with the J function is defined:
1

Jesch 7 (x) = JSiT:jZ(X)’ [J sinh 7" (x) # OJ (56)
Thus, it is easy to show:
1
Jcosh " (7x) = 5[,}] o (rx)+ I 0 (—z’x)} (57)
e m,n 1 m,n m,n

Jsinh 7" (7x) = E[J m(rx)-J 0 (—rx)] (58)

I (zx) = Jcosh " (zx)+Jsinh 7" (7x) (59)

J s (=rx) =Jeosh 77 (rx) I sinh 7 (7x) (60)

Jcosh 1",’; (—z'x) = Jcosh ;’:;’ (rx) (61)

Jsinh % (=zx) = —Jsinh 7" (7x) (62)

The superhyperbolic functions associated with the H function

By using eq. (7), we see:

m,n Ax c m,n (Ax)l
Hy () = 2970 (055 (63)
and

m,n —Ax < m,n (_/’lx)l

B ()= 2000 (0>~ (64)
The superhyperbolic sine function associated with the H function is defined:
2/+1

1 m,n X x

Hsinh?"/ (e ) ZJ (21+1) —(1+21)! (65)

The superhyperbolic cosine function associated with the H function is defined:

Hcosh " (e“) ZJ'" ! 21 ) (66)
The superhyperbolic tangent function associated with the H function is defined:
Hcosh 7" (e")
m,n X\ p.q : m,n X
Htanh P (6 )— W, |:Hsmh P (e )?5 0:| (67)

The superhyperbolic cotangent function associated with the H function is defined:
Hsinh 77 (e’( )

Hlcotanh ™ (&) = Heosh " ()
P9

, [Hcosh 77 () #0] (68)
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The superhyperbolic cosecant function associated with the H function is defined:

Hisech 7 (e") = m [ Elcosh 7 (e") = 0] (69)

The superhyperbolic secant function associated with the H function is defined:
Hesch 7 (") ﬁ() [Hisinh 77 (") =0 70)

Thus, we arrive:

Ercosh 77 (¢) =3[ H 7 (e) + o ()] an
Esinh 77 () = [ 73 () -H 35 ()] 72)
H " (™) =Hecosh 7 (¢ )+ Hsinh 7" () (73)
H (e ) =Heosh ) (¢ )~ Hsinh }77 () (74)
Heosh 7 (e ) = Heosh 777 (") (75)
Hsinh 77 (¢™™) = —Hsinh 77 (") (76)

The relationships and representations of some special functions

The relationships to the supertrigonometric and superhyperbolic functions associated
with the J and H functions can be given:

Jtanh " (ix) = iJtan """ (x) 77
Jtanh ™ (x) = —iJtan ™" (ix) (78)
Jcosh " (x) = Jcos " (ix) (79)
Jcosh " (ix) = Jcos " (x) (80)
Jsinh ™ (x) = —iJ sin " (ix) (81)
Jsinh % (ix) = iJ sin 7" (x) (82)

H tanh 7" (" ) = iHtan 77 (") (83)
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H tanh "/ (¢*) = —iH tan 7" (™) (84)
Hcosh 77 (e* ) =Hcos " (e’x ) (85)
Hcosh 7" (" ) = Hcos 7 (¢*) (86)
Hsinh 7" (e") = ~iHsin 77 (™) (87)
and
Hsinh 7 (¢") = iH sin 77 () (88)

Let E(x), E, 4(x), ES4(x), and E$3(x) be the Mittag-Leffler [9], Wiman [10], Prabhakar
[11], and four-parameter Mittag-Leftler [12] functions, respectively. Then we have [5, 12]:

MO e - “x *9:; 1,1 _x,(l_‘gal)
T O R
—HM | _y (0’1) Y =H" | —x (031)

EI (x)_Hl,2|: ,(0,1),(0,}[):|’ El,ﬂ( ) H1,2|: 7(091),(1_ﬂ,}():|

c _ _—x' (1_'?’1) |

o= m G e o 0- .0

and
(1-¢.@)

such that

wziﬂﬂr_}m“) (89)

£ (=S| )08 on

N g (0.1) (1ng)1
Ez,ﬂ(x)_zj]l,2|: l’( _ ):| 92)

CHEREOLT IR I ©3)
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1 & (1-¢,@) (logx)
Eg,m - LU 7.
BT o o) .
These imply that:
0 !
et L. X
e _;ﬂm {z,( 0. 1)}“ (95)
R (1-9,1)] '
1-e* =— LI - -
(=) =5 19);3“{ (0.1) }1! 96)
© 01) xl
E x) 1,1 —l, (’ b
Z(e ) §J1,2|: (0’1)’(0’1):| l' (97)
© 01) xl
E x) L1 —l, (’ b
() ,ZJ{ (0,1),(1—ﬁ,z)}“ o
l - (l_g’l) xl
Eg X\ 11 —l, >
)= g>§°”"{ (0,1),(1—@1)}“ >
and
1 > (l—g,ZU) Xl
ES7 (e )= —— > I | 1 — 100
o R - (100
Making use of egs. (95) and (96), it is easy to show:
1o o oy | . TNV ol T X
2(e e )_Hcoso{e ,(0,1)}_;( 1) "H“{zl’(o,l)}(zz)z (101)
i( - *e"‘)—HsinLO o —i(—l)’w TR B 102
2l e e = 0,1 e ’(0,1) _l:0 0,1 !(091) (21+1)' ( )
l(e'ex+e'eﬂ)—]l-llcosh"° e =iq]]]‘0 2, X 103
2 - T & TT(00)](20) (103)
l(e*f‘—e*")—lﬁlsinlf") ey (=Sl o, S 104
2 Bl (o) | T "(0,1) (21 +1)! (104)
l[(l_e'*)"g+(1—e*"*)'1—#§](—1)’y’1 AR 105)
2 T(9)5 M (0,1) [(21):! (

%[(1 —e') +(1-e )’”} = F%g)i i {zl;(l(;i’)l)}é—j)! (106)
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and

1

Sl=e) (=) =ﬁ§0(—l)’ I {zm;(l(;i’;)}% (107)

A typical application representation of the solution for the heat-diffusion problem
We now consider the 1-D heat-diffusion equation [13]:
6Q(x,t) " 829(x t)

= > 108
ot ox? (108)

with the initial value condition:
Q(x,0)=6(x) (109)

where X is the thermal diffusivity and Q(x, 7) represents the temperature function.
The solution for eq. (108) reads:

1 X - [1 ¢ - (210gx—4t~¢logt)l
Q )= H]’O : = 1,0 [:
(x1) Ny 2 A {4@% ’(0,1)} 4N7rt;°ﬂ°{ ’(0,1)} T (110)

since there exists [13]:
[1 =
Q(x,t)=,|[——e 111
( ) 4N 7t (1)

In this work we have suggested the theory of the supertrigonometric and superhyper-
bolic functions associated with the J and H functions. We gave the series representations for the
special functions and the series representation for the heat-diffusion equations. The obtained
results are proposed as a useful mathematical tools to present the series solutions for PDE in
mathematical physics.

Conclusion
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Nomenclature

t —space co-ordinate, [s] Greek symbol
x - pace co-ordinate, [m] Q(x, 1) — temperature function, [K]
X — thermal conductivity, [Wm'K™']
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