THERMAL SCIENCE
International Scientific Journal
A NEW INSIGHT TO THE SCALING-LAW FLUID ASSOCIATED WITH THE MANDELBROT SCALING LAW
ABSTRACT
This paper addresses a non-traditional approach for the scaling-law fluid-flows described by fractal scaling-law vector calculus associated with the Mandelbrot scaling law. Their quantum equations were proposed to control the fluid-flows associated with the Mandelbrot scaling law. This gives a new insight into the descriptions for the scaling-law behaviors of the fluid-flows in the Mandelbrot scaling-law phenomena.
KEYWORDS
PAPER SUBMITTED: 2021-01-01
PAPER REVISED: 2021-02-20
PAPER ACCEPTED: 2021-04-06
PUBLISHED ONLINE: 2021-12-24
THERMAL SCIENCE YEAR
2021, VOLUME
25, ISSUE
Issue 6, PAGES [4561 - 4568]
- Bourgoin, M., et al., The Role of Pair Dispersion in Turbulent Flow, Science, 311 (2006), 5762, pp. 835-838
- Collins, R. T., et al., Electrohydrodynamic Tip Streaming and Emission of Charged Drops from Liquid Cones, Nature Physics, 4 (2008), 2, pp. 149-154
- Philip, J., et al., Scaling Law for a Subcritical Transition in Plane Poiseuille Flow, Physical Review Letters, 98 (2007), 15, pp. 154502
- Chesler, P. M., et al., Holographic Vortex Liquids and Superfluid Turbulence, Science, 341 (2013), 6144, pp. 368-372
- Carbone, V., et al., Experimental Evidence for Differences in the Extended Self-Similarity Scaling Laws between Fluid and Magnetohydrodynamic Turbulent Flows, Physical Review Letters, 75 (1995), 17, 3110
- Yakhot, V., et al., Scaling of Global Properties of Turbulence and Skin Friction in Pipe and Channel Flows, Journal of Fluid Mechanics, 652 (2010), May, pp. 65-73
- Brodu, N., et al., New Patterns in High-Speed Granular Flows, Journal of Fluid Mechanics, 769 (2015), Mar., pp. 218-228
- Yao, J., Lundgren, T. S., Experimental Investigation of Microbursts, Experiments in Fluids, 21 (1996), 1, pp. 17-25
- Reeves, M. T., et al., Inverse Energy Cascade in Forced 2-D Quantum Turbulence, Physical Review Letters, 110 (2013), 10, 104501
- Mandelbrot, B., How Long is the Coast of Britain, Statistical Self-Similarity and Fractional Dimension, Science, 156 (1967), 3775, pp. 636-638
- Tarasov, V. E., Fractional Hydrodynamic Equations for Fractal Media, Annals of Physics, 318 (2005), 2, pp. 286-307
- Ostoja-Starzewski, From Fractal Media to Continuum Mechanics, ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik, 94 (2014), 5, pp. 373-401
- Balankin, A. S., Elizarraraz, B. E., Map of Fluid-Flow in Fractal Porous Medium into Fractal Continuum Flow, Physical Review E, 85 (2012), 5, 056314
- Yang, X. J., et al., On the Theory of the Fractal Scaling-Law Elasticity, Meccanica, (2021), July, pp. 1-13
- Yang, X. J., On Traveling-Wave Solutions for the Scaling-Law Telegraph Equations, Thermal Science, 24 (2020), 6B, pp. 3861-3868
- Stokes, G. G., On the Theories of the Internal Friction of Fluids in Motion, and of the Equilibrium and Motion of Elastic Solids, Transactions of the Cambridge Philosophical Society, 8 (1845), 2, pp. 287-305
- Stockes, G. G., On the Effect of the Internal Friction of Fluids on the Motion of Pendulums, Transactions of the Cambridge Philosophical Society, 9 (1851), 2, pp. 8-106
- Reynolds, O., The Sub-Mechanics of the Universe, Cambridge University Press, Cambridge, UK, 1903
- Euler, L., Principes Généraux du Mouvement des Fluides (in French), Mémoires de l'académie des sciences de Berlin, 11 (1757), 1757, pp. 274-315
- Cauchy, A. L., Recherches sur l'équilibre et le mouvement intérieur des corps solides ou fluides, élastiques ou non-élastiques (in French), Bulletin de la Société Philomathique, Paris, France, 1823, pp. 9-13
- Stokes, G. G., A Smith's Prize Paper, Cambridge University, Calendar, Cambridge, UK, 1854
- Navier, C. L., Mémoire sur les lois du mouvement des fluides (in French), Mémoires de l'Académie Royale des Sciences de l'Institut de France, 6 (1822), 1822, pp. 375-394