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This paper addresses a non-traditional approach for the scaling-law fluid-flows
described by fractal scaling-law vector calculus associated with the Mandelbrot
scaling law. Their quantum equations were proposed to control the fluid-flows as-
sociated with the Mandelbrot scaling law. This gives a new insight into the descrip-
tions for the scaling-law behaviors of the fluid-flows in the Mandelbrot scaling-law
phenomena.
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Introduction

Fluid-flows in nature have the behavior of self-similarity, scaling law, and complexity
in the different way of the scale measures. There exist some well-known experimental cases
of scaling-law fluid-flows intensely turbulent laboratory flow [1], thin fluid jets [2], plane Poi-
seuille flow [3], quantum turbulence [4], fluid and MHD turbulent flows [5], pipe and channel
flows [6], high speed granular flows [7], microbursts [8], and forced quantum turbulence [9].
The scaling-law fluid-flows have become interesting topics.

These complex fluid-flow subject to the scale measure by using the Mandelbrot scal-
ing law [10] can be considered in the different way. Making use of the relation between fractal
and power law, the fractional power-law flow with the fractional calculus was investigated in
[11]. New connection with the fractal scaling law and power-law flow was considered in [12].
The fractal metric fluid-flow was proposed in [13].

To deal with the scaling-law fluid-flows, we plan to employ the Mandelbrot scaling
law [10] and fractal scaling-law vector calculus [14] to study the quantum equations for the
fluid-flows associated with the Mandelbrot scaling law. The structure of the letter is designed
as follows.

Theory of the scaling-law vector calculus
associated with Mandelbrot scaling law

Let R, and N be the sets of the positive real numbers and natural numbers, respec-
tively.
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Suppose that
A(x)= |:A ° (;(xl’D )](x) = A()(xl’D)

where y € R, x € R., and 0 < D < 1 is the fractional dimension.
The Mandelbrot scaling law reads [15]:

N(x)=xx'™" (1)

where A € R,, x € R,, and 0 <D <1 is the fractional dimension.
The scaling-law derivative of the function A(x) of order n with the Mandelbrot scaling
law, denoted by LD A(x), is given [14, 15]:

DA (x) = {(I—XW%} A(x) @)

where n € N.
The scaling-law integral of the function y(x) with the Mandelbrot scaling law, denoted
by MSLIy(x), is given [14, 15]:

Ly (1) = (1=D) [ 7 (x) "dx (3)

a

Let
H(x,p2,0) = [H (2™ 6™ ™ 227 ) (%, 0,2:1)

The scaling-law partial derivatives of the function H(x, y, z, f) associated with the
Mandelbrot scaling law is given [14]:

xP OH(x,y,z,0)

MSL 5 X,Y,2z,t)= 4
b, aH(x,y,z,t)
MSLO(})H X,Y,2z,t)= 5
’ ( ) X2 (1_D2) oy %)
Ds GH(x,y,z,t)
MSLG(ZI)H X,¥,2z,t)= z 6
( ) X (I_Ds) 24 ©
tDU aH xayaz»t
MSLaEI)H(x,y,Z’t) - (1_D )}( ( = ) (7)
0 0

The scaling-law gradient with respect to the Mandelbrot-scaling-law function in a
Cartesian co-ordinate system is given [14]:

y(PrPes) i[;{l (1-D)x™" ] ML () +j[;(2 (1-D,)y™" ] Mkl
+k|:}[3 (1—D3)y7D3 :| MSLa(zl)

where i, j, and k are three unite vectors in the Cartesian co-ordinate system.
We now rewrite eq. (21) as [14]:

)

dH = VP Hndr = VPP g ©9)
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where n is the unit vector and dr is a distance measured along the normal direction,
dr = ndr = idx + jy + kdz with dr = ndr.

Let X(x) = yix'1, Y(y) = '™, and Z(z) = y;z' 2.

The scaling area integral of the fractal scaling-law scalar field:

A= A(leliD] :ZzyliDz )

is given:
A(A)= jsjAds = ijAdx(x)dy(y) (10)

which can be re-written [14]:

=j{j[;@ (I—Dz)y‘DZ]dy}[;a(1—D1)x""]Adx (11)
where

ds =¥ (x)dY () ={[ 2 (1-D)) =" [ 1. (1-D,) =™ |} dxdy (12)

forx € [a, b] and y € [c, d].
The scaling-law volume integral of the fractal scaling-law scalar field:

A= A(leliDl v?(zyliD2 JQZPD} )
is given:

A):ji AdV (13)

which can be re-written [14]:

B(A)= f[%(l D)z | dzj 2 (1-D,)y™ | dyjA 24(1-D)x™ Jdr =

j’ (1-D)) D']dxj[;gsl D))z 'Ds]dzj/\ 2 (1-D,)y™ |dy =

'\'—,&. a

[7(2(1 D,)y 7D2 dyj 7 (-D)x D‘ deA 2, (1-Dy)z” sz:

n'—.w-

()] ar( f AdZ(2) (14)

where C
dV =dX (x)dY(y)dZ(z)=

~{[(-D)z" [ 2(1-D,)z " ][ 2 (1-D,) =™ |} dxdydz (15)

forx € [a, b],y € [¢, d], and z € [c, d].
The scaling-law surface integral of the scaling-law vector field:

= '//(llxl_D] ’Zzyl_Dz > 13217[)3 )
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is given [14]:
E(w):gwdS:JandS (16)
where n = dS/dS for S = S(x"PL, yx' P2 yx!™3).

Let n = dS/|dS| = dS/dS, dS =|dS| and
ds =d (y)dz(z )i+dX( )dZ(z)j+dX(x)dY( ) =

—l[}(z 1 D ][;(3 D3]dydz+
+/[;(1 (1-D)) ][;(3 dedz+
+k[;(11 D) _D‘][lz 'DZdedy (17)
where [14]:
d¥ (y)dz(z) = {[ 2 (1-D,)=" [ 2 (1-Dy) = ]} dydz (18)
dx (x)dz(z)={[ 2 (1-D,) =" ][ 2 (1- D)z " ]} dvdz (19)
and
ax (x)d¥ () ={[ 1 (1-D) = [ 12 (1-D,) ™" [} dxdy (20)

The scaling-law divergence of the scaling-law vector field w = iy, + jy, + ky. in the
Cartesian co-ordinate system can be given [14]:

V(Dl,DZ,D3)V/ _ [7{1 (1—D1)x’D‘ ] MSLaEcl)l//X +|:}(2 (1—D2)y D, :| MSLa (1) v,

s (1-0,) 2 [t ally,
The scaling-law curl of the scaling-law vector field y = iy, + jy, + ky. in the Carte-
sian co-ordinate system can be re-written [14]:

21)

V(DI,DZ,D3)'// _
i J k
_ [761 (1 -D, )x_D‘ ] MSLaE(l)’ [Zz (l—Dz)y_Dz } MSLa(yI)’ [Zs (1 -D, )Z—D3 :| MSLa(zl) (22)
V. v, V.
The Gauss-Ostrogradsky-like theorem for the scaling-law vector calculus states [14]:
J[[ve = 2hyay = pwas (23)
Q S

In this section, we introduce the Leibniz derivative and Riemann-Stieltjes integral,
which are calld the calculus with respect to monotone function.
The theory of the fractal scaling-law fluid-flows
The scaling-law material derivative of the scaling-law fluid field
Suppose that
0= ®<7(1x1701 ’lzyliDz > 7(32171)3 :ZotH)o )

be the scaling-law fluid field.
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By using eq. (9) we write the scaling-law differential of the scaling-law fluid field:
de = i[;{l (1-D,)x™ J MSL6§1)®dx+ j[;(z (1-D,)y™ ] MSLa(yI)@dy +

24
k[ 7, (1-D,) y > ] 000dz +[ g, (1-D, )1 > ] o @ds @4

which implies:
Do B dx _ d
D i (1-D)r 1090 X 1 [ 1, (1-D,)y > | dle Yy
Dt dt dt (2 5)
_ —-D; 7] MSL A(1) % _ —D, | MSL A(1)
k[ (1=D)y 2 oo =+ g (1-Dy) ™ ] oo
Let
v=(0x/ot,0y/0t,0z/dt) = iv, + ju, + kv,
be the vector of the velocity.
The scaling-law material derivative of the scaling-law fluid density @ reads:
Do -
=L (=D) relo v 22 (26)
It is well known that the Stokes material derivative, discovered by Stokes [16] to
consider the velocity and further developed [17], is one of the special cases of eq. (26) when
D] :D2 :D3 :D() =0 and)(] =TT X~ 1.
The transport theorem for the scaling-law fluid

From eq. (26) we have the transport theorem for the scaling-law fluid:

g [[Jodr =] H{[ 2 (1=D,)" "oV +uv(D"DZ’DE)<1>} av @7)
Q1) Q1)
which yields that:
2_”](1de = ([[[ 2 (1=, ¥ @dv +fpdods (28)
Dr g o) (1)

since the Gauss-Ostrogradsky-like theorem for the scaling-law vector calculus:
[V P ady = o (von)ds = fpovds

Q1) S(z) S(1)

(29)

holds where S(¢) is the surface of €Q(?), n is the unit normal to the surface, and o is the velocity
vector.

It is noted that the Reynolds transport theorem, discovered by Reynolds [18], is the
special case of eq. (28) when D1 =D, =D;=Dy=0and y1; =), =y =)o = 1.

The conservation of the mass of the scaling-law fluid-flow

The conservation of the mass of the scaling-law fluid-flow is given:
[ 2 (1=Dy )t ™ [0V p+ 0V 22 p = 0 (30)
or alternatively:

[Zo (1 - Do)t_DD ] MSL@EI)p + Vb (Up) =0 (1)
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because
D _ -Dy | MSL A(1) (Dy.D,.D5) —
E!}J(;[pdV—g‘[{[;(o (1-Dy)t ] 0, p+vV p}dV—O (32)
which is connected with the mass of the scaling-law fluid-flow:
M= .!2_!‘.[ pdV (33)

where p and M are the density and mass of the complex fluid-flow, respectively.

The conservation of the mass for the classical fluid-flow, discovered by Euler
[19], is the special case of the conservation of the mass of the scaling-law fluid-flow when
D=D,=D;=Dy=0and g, =y =y =% = | imply that X(x) =x, Y(y) =y, and Z(z) = z.

Cauchy-type scaling-law strain tensor, Stokes-type scaling-law
strain tensor, and Stokes-type scaling-law velocity gradient tensor

The Cauchy-type scaling-law strain tensor for the scaling-law fluid-flow, denoted by

>, is defined:
1

3= E[VW’DDD% +ovER) | (34)

The Stokes-type scaling-law strain tensor for the scaling-law fluid-flow, denoted by
A, is defined:

_ oo, o(0.0,0)
O'—E[V RN J (35)

The Stokes-type scaling-law velocity gradient tensor for the scaling-law fluid-flow,
denoted by V10203 _is given:

V(DI’DZ’D3)U — Z+O- — l[v(Dl sDsts)U + UV(DI’DZ’DK)] +lvliv(Dl,Dz,Dl) _UV(DI’Dz’Da):I (36)
2 2
The stress tensor for the scaling-law fluid-flow, denoted by 7, is given:
T=-pl+22) (37)

where 4 is the shear moduli of the viscosity, 7 is the unit tensor, and p represents the pressure.
The Cauchy strain tensor by Cauchy [20], Stokes-type strain tensor and Stokes-type
velocity gradient tensor by Stocks [21] are the special cases of the scaling-law fluid-flow if
Di=D,=D;=Dy=0andy, ===y =1
Conservation of the momentums for the scaling-law fluid-flow
The conservation of the momentums for the scaling-law fluid-flow reads:
D
o Hpvav = [l fav + fpras (39)
Q1) Qr) S(1)
where f'is the specific body force.
This implies:
[ZO (1 _ DO )t*Do ] MSLaE‘) (,DD) + V(Dth:Dz) (Up) — V(Dl ’DzaDz)T + f (39)

because there exists:
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gj}{[% (1=D, ) Y-8 (pv) + V\* ) (0p) = V2T — fldy =0 (40)
where
%J‘H podV = J-J.J‘ {[;(0 (1-D,) ™ } Mst 5 (1) (pv)+ pvPPes) (pu)} dv (41)
Q1) Q1)
and
;%Tds = Qj}vwlﬂb"z)mlf @2)

Navier-Stokes-type equations of the scaling-law fluid-flow
With the aid of eq. (37) we have:

V(D' yDz)Ds)T — _v(Dl’Dz,Dz)p + },V(ZDI:ZDz’ZDz)D (43)
such that:

[;(0 (1 _DO )t*Do :' MSLaSI) (,OU) + Uv(DlsDsts) (pl)) — _V(DlsDsts)p + W(ZDl»ZDstDs)U + f (44)

where
V(Dlsz’DB)U = 0 (45)
DV(DI,DzaDs)D — [V(D]’DZ’D3)U] XU +%V(D1,D2,D3)UZ (46)
v(2D1)2D2s2D3) — V(DI’DZ’DS).V(DI’DDDS) 47

and y is dynamic viscosity.

From eq. (44) it is easy to see:
p{[//{o (1 _DO )t*Do :' MSLafl)U n UV(DI’DZ’DJ)U} — _V(DI’DZHDS)p + }/V(2D"2D2’203)l) + f (48)

We denote that eq. (48) is the incompressible scaling-law Navier-Stokes-type
equations of the scaling-law fluid-flow and is the extended version of the Navier-Stokes
equations of the complex fluid-flow, proposed by Stokes [16] and by Navier [22] when
Di=D,=D;=Dy=0andy =y0=x:=%=1

Conclusion

In this work we had reported the mathematical theory of the scaling-law Navier-Stokes
type equations of the scaling-law fluid-flow by using the fractal scaling-law vector calculus asso-
ciated with Mandelbrot scaling law. The conservations of the mass and momentums of the scal-
ing-law fluid-flows have been suggested with the aid of the Gauss-Ostrogradsky like theorem for
the scaling law vector calculus. Our technology is as an efficient mathematical tool proposed to
study the theory of the scaling-law fluid-flow in the Mandelbrot scaling law phenomena.
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Nomenclature

f —specific body force, [Nm~] Greek symbol

t — time, [s] v — velocity vector, [ms™]

X, y, z — co-ordinates, [m]
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