THERMAL SCIENCE

International Scientific Journal

Authors of this Paper

External Links

THE Y FUNCTION APPLIED IN THE STUDY OF AN ANOMALOUS DIFFUSION

ABSTRACT
In this article, we propose a new family of the extended analogues to the Y function for the first time. The relationships among the Y function, Fox H function, Meijer G function, Wright generalized hypergeometric function, and Clausen hypergeometric function are discussed in detail. This result is used to represent the solutions for the anomalous diffusion problems.
KEYWORDS
PAPER SUBMITTED: 2020-05-12
PAPER REVISED: 2020-07-12
PAPER ACCEPTED: 2020-08-25
PUBLISHED ONLINE: 2021-12-24
DOI REFERENCE: https://doi.org/10.2298/TSCI2106465Y
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2021, VOLUME 25, ISSUE Issue 6, PAGES [4465 - 4475]
REFERENCES
  1. Pincherle, S., Sulle Funzioni Ipergeometriche Generalizzate, Atti R. Accad. Lincei, Rend. Cl. Sci. Fis. Mat. Natur., 4 (1888), 4, pp. 694-700 and pp. 792-799, Reprinted in Salvatore Pincherle: Opere Scelte, Vol. 1, UMI (Unione Matematica Italiana) Cremonese, Roma, 1954, pp. 223-230 and pp. 231-239
  2. Barnes, E. W., A New Development of the Theory of the Hypergeometric Functions, Proceedings of the London Mathematical Society, 2 (1908), 1, pp. 141-177
  3. Mellin, H. J., Abriss einer einheitlichen Theorie der Gamma-und der hypergeometrischen Funktionen (in German), Mathematische Annalen, 68 (1910), pp. 305-337
  4. Mainardi, F., et al., The Pioneer of the Mellin-Barnes Integrals, Journal of Computational and Applied Mathematics, 153 (2003), 1-2, pp. 331-342
  5. Fox, C., The G and H Functions as Symmetrical Fourier Kernels, Transactions of the American Mathematical Society, 98 (1961), 3, pp. 395-429
  6. Meijer, C. S., Über Whittakersche bzw. Besselsche Funktionen und deren Produkte (in German), Nieuw Archief voor Wiskunde, 18 (1936), 2, pp. 10-29
  7. Wright, E. M., The Asymptotic Expansion of the Generalized Hypergeometric Function, Journal of the London Mathematical Society, 1 (1935), 4, pp. 286-293
  8. Yang, X. J., Theory and Applications of Special Functions for Scientists and Engineers, Springer Singapore, New York, USA, 2021
  9. Gasper, G., Rahman, M., George, G., Basic Hypergeometric Series, Cambridge University Press, Cambridge, Mass., USA, 2004
  10. Yang, X. J., An Introduction Hypergeometric, Supertrigonometric, and Superhyperbolic Functions, Academic Press, New York, USA, 2021
  11. Mathai, A. M., et al., The H-Function: Theory and Applications, Springer Science, New York, USA, 2009
  12. Mehrez, K., Positivity of Certain Classes of Functions Related to the Fox H-Functions with Applications, Analysis and Mathematical Physics, 11 (2021), 3, pp. 1-25
  13. Kiryakova, V. S., Generalized Fractional Calculus and Applications, CRC press, Boca Raton, Fla., USA, 1993
  14. Boyadjiev, L., Luchko, Y., Mellin Integral Transform Approach to Analyze the Multidimensional Diffusion-Wave Equations, Chaos, Solitons and Fractals, 102 (2017), Sept., pp. 127-134

© 2024 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence