International Scientific Journal


A linearized non-isothermal general rate model is formulated and analytically solved to quantify the effects of temperature variations in fixed-bed chromatographic columns. The model contains a set of four coupled PDE accounting for energy transfer resistances, inner and outer particle-pore diffusions, and interfacial mass and axial dispersion. The Laplace transform, the eigenvalue-decomposition technique, and a conventional technique for the solutions of ODE are jointly employed for the solution of the model equations. A few numerical test studies are considered to assess the impact of system parameters on the performance of packed-bed adsorption columns. To access the range of applicability and to get the scope of the appropriateness of calculated analytical results, the numerical results are also obtained by applying a high resolution finite volume scheme. The analytical solutions obtained can be used as an invaluable tool for analyzing, optimizing, and upgrading the non-isothermal liquid chromatographic procedures.
PAPER REVISED: 2020-10-26
PAPER ACCEPTED: 2020-10-27
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2021, VOLUME 25, ISSUE Issue 5, PAGES [3987 - 4002]
  1. Guiochon, G., Lin, B., Modeling for preparative chromatography, Elsevier Academic Press., Amsterdam, 2003.
  2. Guiochon, G., Felinger, A., Shirazi, D.G., Katti, A.M., Fundamentals of preparative and nonlinear chromatography, 2nd ed, ELsevier Academic press, New York, 2006.
  3. Miyabe, K., Guiochon, G., Measurement of the parameters of the mass transfer kinetics in high performance liquid chromatography, J. Sep. Sci.,26 (2003), 3-4, pp. 155-173 %3
  4. Heinisch, S., Rocca, J.L., Sense and nonsense of high-temperature liquid chromatography,J. Chromatogr. A., 1216 (2009), 4, pp. 642-658.
  5. Antia, F, D., Horvath, C., High performance liquid chromatography at elevated temperatures: examination of conditions for the rapid separation of large molecules, J. Chromatogr. A., 435 (1988), pp. 1-15.
  6. Abbott, S., Achener, P., Simpson, R., Klink, F., Effects of radial thermal gradients in elevated temperature high-performance liquid crhomatography, J. Chromatogr.,218 (1981), 218, pp. 123-135.
  7. Brandt, A., Mann, G., Arlt, W., Temperature Gradients in Preparative High performance Liquid Chromatography Columns, J. Chromatogr. A., 769 (1997), 1, pp. 109-117.
  8. Greibrokk, T., Andersen, T., High temperature liquid chromatography, J. Chromatogr. A., 1000 (2003), 1-2, pp. 743-755.
  9. Holm, A., Molander, P., Lundanes, E., Greibrokk, T., Novel column oven concept for cold spot large volume sample enrichment in high throughput temperature gradient capillary liquid chromatography, J. Sep. Sci., 26 (2003), 12-13, pp. 147-153.
  10. Warren, F. V. Jr., Bidlingmeyer, B.A., Influence of temperature on column efficiency in reversed-phase liquid chromatography, Anal. Chem., 60 (1988), 24, pp. 2821-2824.
  11. Cerro, R., L., Smith, W., Effects of Heat Release and Nonlinear Equilibrium on Transient Adsorption, Ind. Eng. Chem. Fund., 8 (1969), 4, pp. 796-802.
  12. Glöckler, B., Dieter, H., Eigenberger, G., Nieken, U., Efficient Reheating of a Reverseflow Reformer-An experimental study, Chem. Eng. Sci., 62 (2007), 18-20, pp. 5638-5643.
  13. Kruglov, A., Methanol Synthesis in a Simulated Countercurrent Moving-bed Adsorptive Catalytic Reactor, Chem. Eng. Sci., 49 (1994), 49, pp. 4699-4716.
  14. Xiu, G., Li, P., Rodrigues, A.E., Sorption-enhanced Reaction Process with Reactive Regeneration, Chem. Eng. Sci., 57 (2002), 18, pp. 3893-3908.
  15. Yongsunthon, I., Alpay, E., Design of Periodic Adsorptive Reactors for the Optimal Integration of Reaction, Separation and Heat Exchange, Chem. Eng. Sci., 54 (1999), 13-14, pp. 2647-2657.
  16. Chen, M., H., Horvath, C., Temperature programming and gradient elution in reversed-phase chromatography with packed capillary columns, J. chromatogr. A., 788 (1997), 1-2, pp. 51-61.
  17. Genowefa, H., Jerzy, S.,K., The effect of temperature on the efficiency parameters in adsorptive liquid chromatography, JHRC, 4 (1981), pp. 27-32.
  18. Sainio, T., Ion-exchange resins as stationary phase in reactive chromatography, Acta Universitatis Lappeenrantaensis 218, Diss. Lappeenranta, University of Technology, Finland.521
  19. Sainio, T., Kaspereit, M., Kienle, A., Seidel-Morgenstern, A., Thermal effects in reactive liquid chromatography, Chem. Eng. Sci., 62 (2007), pp. 5674-5681.
  20. Sainio, T., Zhang, L., Seidel-Morgenstern, A., Adiabatic operation of chromatographic fixed-bed reactors, Chem. Eng. J., 168 (2011), pp. 861-871.
  21. Vu, T.D., Seidel-Morgenstern, A., Quantifying temperature and flow rate effects on the performance of a fixed-bed chromatographic reactor, J. Chromatogr. A., 1218 (2011), pp. 8097-8109.
  22. Javeed, S., Qamar, S., Seidel-Morgenstern, A.,Warnecke, G., Parametric study of thermal effects in reactive liquid chromatography, Chem. Eng. J., 191 (2012), pp. 426-440.
  23. Qamar, S., Sattar, F.A., Seidel-Morgenstern, A., Theoretical investigation of thermal effects in non-isothermal non-equilibrium reactive liquid chromatography, Chem. Eng. Res. Design., 115 (2016), pp. 145-159.
  24. Qamar, S., Sattar, F. A., Seidel-Morgenstern, A., Theoretical investigation of thermal effects in non-isothermal non-equilibrium reactive liquid chromatography, Chem. Eng. Res. Design., 115 (2016), pp. 145-159.
  25. Qamar, S., Sattar, F. A., Batool, I., Seidel-Morgenstern, A., Theoretical analysis of the influence of forced and inherent temperature fluctuations in an adiabatic chromatographic column, Chem. Eng. Sci., 161 (2017), pp. 249-264.
  26. Qamar, S., Kiran, N., Anwar, T., Bibi, S. and Seidel-Morgenstern, A., Theoretical investigation of thermal effects in an adiabatic chromatographic column using a lumped kinetic model incorporating heat transfer resistances, Ind.& Eng. Chem. Res.,57 (2018), 6, pp. 2287-2297.
  27. Hayat, A., An, X., Qamar, S., Warnecke, G., Seidel-Morgenstern, A., Theoretical Analysis of Forced Segmented Temperature Gradients in Liquid Chromatography, Processes.,7(2019), 11, pp. 846-864.
  28. Zafar, S.,Perveen, S., Cheema, A.T., Qammar, S., Analysis of temperature variation in fixed-bed columns using non-isothermal and non-equilibrium transport model, Thermal science,
  29. Durbin, F., Numerical Inversion of Laplace Transforms: An efficient improvement to Dubner and Abate's Method, Comput. J., 17 (1974), pp. 371-376.

© 2023 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence