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A linearized non-isothermal general rate model is formulated and analytically solved 
to quantify the effects of temperature variations in fixed-bed chromatographic columns. 
The model contains a set of four coupled PDE accounting for energy transfer resistanc-
es, inner and outer particle-pore diffusions, and interfacial mass and axial dispersion. 
The Laplace transform, the eigenvalue-decomposition technique, and a conventional 
technique for the solutions of ODE are jointly employed for the solution of the model 
equations. A few numerical test studies are considered to assess the impact of sys-
tem parameters on the performance of packed-bed adsorption columns. To access the 
range of applicability and to get the scope of the appropriateness of calculated analyt-
ical results, the numerical results are also obtained by applying a high resolution finite 
volume scheme. The analytical solutions obtained can be used as an invaluable tool 
for analyzing, optimizing, and upgrading the non-isothermal liquid chromatographic 
procedures. 
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Introduction

Chromatography is a proven method for separating complex chemical samples into 
its individual constituent. The high performance liquid chromatography (HPLC) has been ex-
tensively applied for the large-scale separations in pharmaceutical and chemical industries, 
[1-3]. This process has capability to separate multi-component mixtures and to ascertains their 
features like chemical structure and concentration. Since last few years, chromatographers have 
started using elevated temperature for the development and optimization of HPLC methods. 
High temperature liquid chromatography (HTLC) correlates to any separation which is per-
formed at temperatures ranging between 40-200 °C using a liquid mobile phase, [4]. The HTLC 
has profound benefits as compared to the traditional ambient HPLC, because in the HTLC 
analysis, thermodynamics and kinetic parameters are functions of the temperature. The HTLC 
reduces retention time, increases column efficiency, provides greater compatibility for longer 
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columns packed with smaller particles, minimizes (or excludes) the use of organic solvent 
involved in the bulk phase, enhances selectivity and resolution, and has the ability to perform 
a temperature programmed elution. Moreover, reproducibility can be improved through a con-
trolled temperature. 

Until recent times, temperature was not considered as a variable in a typical HPLC 
process. It is because of the fact that composition of the mobile phase, which has greater effect 
on selectivity, can easily be adapted for optimization of the process. Over the past two decades 
variations in the column temperature have been explored. Literature review for the past decade 
shows that interest in the use of HTLC has gained momentum principally as a way to increase 
the speed of LC analysis and to modify chromatographic selectivity, [5]. Several experimental 
studies have been conducted to study temperature variations inside the column and their con-
sequent on the chromatographic process, [6-10]. Thermal effects in gas chromatography were 
also analyzed and reported by several authors, [11-15]. The effects of zone cooling to facili-
tate the flow of analyte for large injected volume within packed-capillaries were discussed by  
[9, 16]. Furthermore, Antia and Horvath [5] have examined the conditions for quick separation 
of large molecules at elevated temperatures in HPLC. Other contributions regarding tempera-
ture variations inside liquid chromatographic columns can be found in the articles [17-21]. 
Moreover, [22-27] have theoretically investigated the effects of temperature changes by using 
non-isothermal dispersive equilibrium model (DEM) and kinetic lumped model (KLM). 

The modelling of chromatographic procedures is usually carried out with mass-bal-
ance based macroscopic or deterministic models. In literature, the countless macroscopic mod-
els are present that illustrate the chromatographic procedures with numerous details [1, 2]. 
The macroscopic models like the ideal model (IM), DEM, KLM, lump pore diffusion model, 
equivalence of macroscopic kinetic model, and general rate model (GRM) have numerical or 
analytical solutions that can be derived with ease, normally by using well-established and stan-
dard mathematical software and tools. This article extends our previous analysis, c.f. [24, 25, 
27], by formulating and solving analytically the non-isothermal GRM of liquid chromatogra-
phy, which is one of the most detailed kinetic model that accounts for many of the factors in-
fluencing the process of chromatography. In the transparticle-transport mechanisms of non-iso-
thermal GRM, the considerable contributions include the solid diffusion in the adsorbed phase, 
pore diffusion in fluid-filled pores, the intera-particle-dispersion, and intera-particle-transport 
mechanism depending on mixing (axial dispersion) effects, and resistances of interfacial mass 
and heat transfer. Thus the model mathematically represents a system of convection-diffusion 
partial differential equation. To obtain the analytical solution of governing model equations, 
the Laplace transformation and the eigenvalue-decomposition technique are employed. Here, 
an accurate and efficient numerical Laplace inversion is applied to acquire back the solution in 
the time domain, see [25, 28]. To determine ranges in which our analytical solutions are useful 
and valid, a second order finite volume scheme is also implemented to approximate the model 
equations. Both numerical and analytical solutions are compared with each other. Several case 
studies are being conducted to further exhibit the joint occurrence of concentration and thermal 
profiles and to point-out crucial parameters which effect the temperature variations inside ther-
mally insulated columns. 

The non-isothermal GRM of column chromatography

To formulate a non-isothermal GRM, the following basic assumptions are made. 
–– the column is insulated thermally and is filled homogeneously with spherical particles of 

radius Rp, 
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–– an incompressible mobile phase is considered, 
–– constant volumetric flow rate is assumed, 
–– physical properties of the system like viscosity, density, heat capacity, transport coefficients 

like axial heat-conductivity, and the axial dispersion are assumed independent of tempera-
ture, 

–– the axial and heat conductivity coefficient are not depending on the flow rate, and
–– the mobile phase (solvent) has no interaction with the stationary phase. 

For the mobile phase, the GRM has two sets of coupled mass balances, one set indi-
cates the bulk phase flow that moves in the interstitial stationary phase carrying various com-
ponents. The second set describes the dynamics of solute in the stagnant fluid of particle pores. 
The governing mass balance equation for a single solute in the bulk phase is given, [2]:

( ) 2

eff = 2
3(1 ) | =b b b

b b b p R R b b bpp

c c c
k c c u D

t R z z
∂ ∂ ∂

+ − − +
∂ ∂ ∂

    (1)

where cb(z, t) is the concentration of solute in the bulk fluid, ϵb – the external porosity,  
Rp – the radius of spherical solid particle, keff – the effective external coefficient of mass-trans-
fer, the factor 3/Rp represents the ratio of surface area to volume for the spherical particles,  
cp(z, t, r) – the concentration of solute in the particle pores, the term cb – cp|R=Rp on the right 
reflects differences in concentration between the extra particular mobile phase through the ex-
ternal film, and the intra particular mobile phase at the particle surface. The u is the interstitial 
velocity, Db – the coefficient of axial-dispersion, t – the time, and z – the column’s axial-co-ordi-
nate and the radial-co-ordinate of the spherical particle is denoted by R. The dynamics of solute 
concentration in the particle pores can be described by the mass balance equation:
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where ϵp is the internal particle porosity, qp(z, t, r) – the concentration of the solid-phase in equi-
librium, and Deff = ϵp Dp – the effective internal pore-diffusivity coefficient. The corresponding 
energy balance of the column is given:
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In the aforementioned energy balance equation, the symbol Tb denotes the bulk fluid 
temperature, Tp – the fluid temperature in the particle pores, λeff,z – the effective axial coefficient 
of heat conductivity, ρL indicates density per unit volume in the mobile phase, cL 

P symbolizes the 
mobil phase heat capacity, and heff defines the effective coeficient of heat transfer from particle 
to fluid. An energy balance law for the radial temperature profile inside the particles pores can 
be described:

2
eff , 2

1(1 )( ) =p p p
p p A e

T q T
c H R

t t R RR
ρ λ
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where ρcp¯¯ = ϵp ρLcL 
P + (1 – ϵp)ρScS

P
 . Moreover, ΔHA represents the enthalpy of adsorption, ρS – the 

density, cS
P

 – the heat capacity in the solid phase, and λeff,e – the effective internal heat diffusivity 
coefficient. The considered densities ρL, ρS, and heat capacities cL 

P and cS
P for the procedure are 

taken independent of temperature, which is a valid assumption in the case of limited tempera-
ture range. The amount of solute absorbed is dependent to the temperature that can be easily 
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revealed through van’t Hoff-type expression considering the enthalpy of adsorption. Thus, the 
linear phase equilibrium relation in concentration is expresssed: 

ref A
ref

g

1 1( , ) = exp
Rp p p p

p

Hq c T a c
T T

  −∆
−      

(5)

where aref measures the relative mass storage capacity of the solid phase at a reference tempera-
ture Tref and the symbol Rg symbolizes the general gas constant. Let us define:

ref ref
,1 ,2 ,1 ,2= , = , = , =b b b b p p p pc c c T T c c c T T− − (6)

Moreover, we introduce the following new variables in dimensionless form to reduce 
the number of involved parameters: 
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where Fb = (1 – ϵb)/ϵb is the phase ratio, L – the axial length of column, Pee – the Peclet number 
for concentration, PeT – the Peclet numbers for temperature, Bc and BT are the corresponding 
Biot numbers, respectively, while ηc, ηT, ξc, and ξT are the dimensionless constants. By utilizing 
eqs. (6) and (7) in eqs. (1)-(4), the system of equations becomes:
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where eq. (8), we define Pee = Pe1 and PeT = Pe2, and similarly ξc = ξ1 and ξT = ξ2. The equilib-
rium relation between the solid and liquid-phase concentrations in eq. (5) can be linearized by 
using first order Taylor-expansion considering small variations in the temperature and concen-
tration [24, 25]. The Taylors expansion is defined:
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Utilizing the Taylor’s expansion up to first order in eq. (5), and simplifying the result-
ing expression, we get:

ref ref ref A
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The initial conditions for the previous model equations are defined:
init init

, , , ,( ,0) = , ( ,0, ) = , for = 1,2 and 0 , 1b m b m p m p mc x c c x r c m x r≤ ≤ (13)
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where cb,1
init is the initial liquid phase concentration, cp,1

init – the initial concentration in the particle 
pores, while cb,2

init = Tb
init – T ref and cp,2

init = Tp
init – T ref are the initial temperatures in the bulk and 

stationary phases. For an initially regenerated column, cb,1
init = 0 and cp,1

init = 0. Moreover, the fol-
lowing Robin type boundary conditions also known as the Danckwert boundary conditions are 
considered at the column entrance:
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where cb,1
inj is the inlet concentration, cb,2

inj = Tb
inj – T ref describes the sample temperature at the 

inlet and τinj = utinj/L. At the column outlet (x = 1), the following outflow boundary conditions 
are assumed: 

,

=1

= 0b m

x

c
x

∂

∂
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boundary conditions for eq. (8), at the center, i.e. at r = 0 and at the boundary of the porous 
particle, i.e. at r = 0 are stated:
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where Bc = B1 and BT = B2. The formulation of model equations is complete now. The next step 
is to derive the analytical solution of the model equations. 

Procedure for deriving analytical solutions

The considered linearized non-isothermal GRM along with the aforementioned condi-
tions is solved analytically by means of Laplace transformation, the eigenvalue-decomposition 
technique, and a standard technique for the solutions of ODE. The Laplace transform can be 
defined:

	 0
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− ≥∫
The implementation of Laplace transformation on eq. (8) gives: 
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Using eq. (12) in eqs. (9) and (10) and applying the Laplace transformations, we obtain:
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Equation (18) represents coupled system of differential equations, thus to derive an-
alytical solution, we have to uncouple this system of equation by means of eigenvalue-decom-
position technique. The matrix of coefficients on the right side of eq. (18) is diagonalizable and 
the two distinct eigen values are: 

2
1,2 1 2 1 2 2 1

1 1= ( ) ( ) 4
2 2

λ α β α β α β+ ± − + (20)
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On the basis of these eigenvalues, the matirx, A of linear transformation can be de-
fined:
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The effective use of previous matrix helps us to formulate a linear-transformation of 
the form: 
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The application of aforementioned linear-transformation on eq. (18) gives:
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Equation (24) depicts a system of two uncoupled ODE which can be solved explicitly. 
Their solutions are given:

1 1 2 2
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where C1, C2, D1, and D2 are integrations constants which can be calculated by utilizing the consid-
ered boundary conditions at the two ends of the column. Implementing the linear transformation in  
eq. (23) on the boundary conditions given in eq. (16) at r = 0, and then utilizing the resulting 
boundary conditions in eq. (25), we get C1 = –C2 and D1 = –D2. Thus, eq. (25) reduces to:
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Substituting the values of b̄p,1 and b̄ p,2 in the transformation eq. (23), we obtain:
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By utilizing the boundary conditions at r = 1 from eq. (16) in eq. (27), we get two 
coupled equations containing C1 and D1. After solving these equations, we obtain:
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Using these values in eq. (27), we get:
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Substituting the values of c ̄p,1 and c̄p,2 from eqs. (30) and (31) in eq. (17), we have the 
system of equations:
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Equation (32) is a coupled sytem of equations. Again adopting the same decoupling 
procedure, we can uncouple this system by using the transformation: 
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[ ] [ ]23,4 1 2 1 2 2 1
1 1= ( ) ( ) ( ) ( ) 4 ( ) ( )
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Thus, we achieve an uncoupled system of the form:
2
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(36)
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The solutions of eq. (36) are given:

1 2 1 2
,1 1 2 ,2 1 2( , ) = , ( , ) =m x m x n x n x

b bb x s C e C e b x s D e D e′ ′ ′ ′+ + (37)

where

2 2
1,2 3 1,2 4

1 1 1 1= Pe Pe 4 , = Pe Pe 4
2 2 2 2e e T Tm nλ λ± − ± − (38)

where C′1, C′2, D′1 and D′2 are integrations constants that can be calculated by utilizing the consid-
ered boundary conditions at both ends of the column. The Laplace transformation of boundary 
conditions in eqs. (14) and (15) provides:
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1 = 1 , = 0 for = 1,2
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∂ ∂

(39)

Utilizing these boundary conditions together with the transformation mentioned in 
eq. (34), we obtain the following Laplace domain solutions for concentration and temperature:
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It is very difficult to perform Laplace inversion of the previous equations analytically. 
For that reason, an accurate and efficient numerical Laplace inversions is suggested to obtain 
solutions in the time domain, see [25, 28]. 

Numerical test problems

This section presents some numerical test cases for analyzing profiles of concentra-
tion cb,1 and temperature cb,2 at the column outlet obtained from the semi-analytical solutions, 
c.f. eqs. (40) and (41), of non-isothermal linearized GRM based on the isotherm given by the  
eq. (12). To explore the ranges of applicability and to obtain confidence on the correctness of 
our semi-analytical solutions, a high resolution finite volume scheme (HR-FVS) is also applied 
is to approximate the non-linear model, c.f. eqs. (8)-(10), [24]. The standard values of the pa-
rameters used in the test cases are given in tab. 1. These values fall in the typical ranges of the 
values which are utilized in HPLC applications [21]. 



Kiran, N., et al.: A Linearized Non-Isothermal General Rate Model for ... 
THERMAL SCIENCE: Year 2021, Vol. 25, No. 5B, pp. 3987-4002	 3995

Table 1. Reference parameters used in case studies
 Parameters Values 

Column length L = 1 cm
External porosity ϵb = 0.4
Internal porosity ϵp = 0.333
Henry’s constant  aref = 1.2
Particle radius Rp = 0.004 cm 
Gas constant Rg = 0.008314 kJ/molK 
Density time heat  
capacity in mobile phase  ρLcL

P = 4.0 kJ/𝓁K

Density time heat  
capacity in stationary phase ρScS

P = 4.0 kJ/𝓁K 

heat transfer coefficient heff = 0.1 J/mincm2/K 
Interstitial velocity u = 0.2 cm per minute 
Initial concentration cb,m

init = 0 mol/𝓁 
Injected bulk concentration cb.m

inj = 1.0 mol/𝓁
Injected temperature T inj = 300 K 
Reference temperature T ref = 300 K
Dimensionless injection time τinj = 0.3 minutes
Peclet number for concentration  Pec = 600 
Peclet number for temperature  PeT = 600
Biot number for concentration Bc = 40
Biot number for temperature BT = 68.6 
Dimensioless constant ηc = 3.1 
Dimensioless constant ηT = 18.2 

Comparison of isothermal (ΔHA = 0) and non-isothermal case (ΔHA ≠ 0)

Figure 1 demonstrates a comparison between the isothermal (ΔHA = 0) and 
non-isothermal (ΔHA ≠ 0) behavior of the process. In this case, the injected temperature Tinj 
and initial temperature Tinit were assumed to be equal to the reference temperature T ref i.e.  
Tinit = Tinj = Tref = 300. It is clear from fig. 1(a) that in the isothermal case (ΔHA = 0) the tem-
perature cb,2 has a steady profile. The non-isothermal operating conditions shown in fig. 1(b) 
reflects that a non-zero value of the adsorption enthalpy (ΔHA = –10 kJ/mol) has generated 
significant fluctuations in the temperature profile. However, the considered adsorption enthalpy 
has no influence on the concentration peak cb,1 due to the considered linearization. Further, the 
adsorption front rises the temperature profile (to about >2.5 K), while the subsequent desorption 
front reduces the temperature. After the elution, the temperature returns back to the reference 
value. Due to the selected same values of density times specific heat for solid and liquid phases, 
the pair of temperature and concentration profiles are propagating at comparable speeds and 
therefore, have similar mean retention times. 
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Figure 1. Comparison of isothermal ΔHA = 0 and non-isothermal ΔHA ≠ 0 cases  
for Tinj = Tinit = 300 K, ρScS

P = 4 kJ/𝓁K; other reference parameters are given in tab. 1

Effect of Peclet numbers Pec and PeT

The specific influences of the dimensionless Peclet numbers, Pec (exhibiting axial-dis-
persion) and PeT (exhibiting thermal heat-conductivity along the column) on the temperature 
and concentration profiles are interpreted in fig. 2, while keeping Tinj = Tref. It can be seen 
that a change in the value of Peclet number has a significant impact on the concentration and 
temperature peaks. The concentration and temperature profiles are widened for small Peclet 
numbers Pec = PeT = 10 with large variances, while the profiles are more peaked and narrow 
for larger value of Peclet number Pec = PeT = 600. In the previous calculation, we have chosen  
ρScS

P /ρLcL
P = 1. It is clearly visible from these plots that Peclet numbers do not influence the 

holding times of the concentration and temperature profiles. 
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Figure 2. Effect of Peclet number on concentration and temperature profile;  
ΔHA = –10 and ρScS

P/ρLcL
P = 1

Effect of enthalpy of adsorption (ΔHA)

Figure 3 display the effects of different values of adsorption enthalpy on the tem-
perature and concentration profiles. It can be easily seen that analytical results of the consider 
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linearized model, eq. (12), and numerical results of the HR-FVS for the non-linear isotherm,  
eq. (5), deviate from each other when the absolute value of adsorption enthalpy is increased 
from 2-20 kJ/mol. Such bigger values of ΔHA are the main reasons for profound variations in the 
temperature profile. For an enthalpy of adsorption ΔHA = –20 kJ/mol the predicted temperature 

Figure 3. Concentration and temperature peaks at various values of adsorption enthalpy ΔHA,  
a comparison of numerical and analytical solutions; Tinj = Tinit = Tref = 300 K,  ρScS

P = 4 kJ/𝓁K, ρLcL
P = 4 kJ/𝓁K
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deviations exceed 5K, fig. 3(f). In the current scenario, our analytical solutions are over-pre-
dicting the temperature fluctuations from isothermal level as compared to the more physical 
numerical solutions and also generate sharper peaks. Thus, these results justify our assumption 
for linearizing the isotherm for moderate enthalpy of adsorption. 

Effect of varying injected temperature Tref ≠ Tinj 

Figure 4 demonstrates the behavior of temperature and temperature profiles on vary-
ing the temperature of injected sample. In fig. 4(a), it can be observed clearly that due to the 
considered cold injection Tinj < Tref, the height of temperature adsorption peak decreases. while, 
the later occurring temperature desorption peak increases when the temperature of injection 
is decreased. Contrarily, fig. 4(b) depicts that temperature of adsorption peak lifts up in the 
positive upward direction due to a hot injection Tinj > Tref. In this situation, the desorption peak 
gradually declines. In all aforementioned cases, due to small value of adsorption enthalpy and 
considered linearization, the resulting small temperature variations produce no considerable 
influence on the profiles of concentration. Once again, we have used ρScS

P /ρLcL
P = 1. 

 
Figure 4. Effect of Tref = Tinj and Tref ≠ Tinj at ΔHA = –10 and ρScS

P / ρLcL
P = 1 on  

concentration and temperature profile

Joint effect of Biot number Bc and BT 

Figure 5 describes the joint effects of Bc and BT. Figures 5(a) and 5(b) show the plots 
of concentration and temperature, respectively, for three different values of BT, while keeping  
Bc = 40 as constant. It is evident that with an increase in the value of BT from 0.686-68.6, broad-
ened peaks of the temperature profiles are converted into narrower peaks. The amplitudes of 
temperature fluctuations increases for BT = 68.6 and then decreases. Moreover, the variation of 
BT has not changed the concentration profile. On the other hand figs. 5(c) and 5(d) displays the 
plots of concentration and temperature profiles, respectively, for different values of Bc keeping 
BT = 68.6 as fixed. Now, the variation of Bc has considerable influence on the concentration 
and temperature peaks. The broadened concentration profiles are shifting to narrower peaks on 
increasing the value of Bc. In both cases the temperature variations attain an extremum of 1.4 K. 
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Figure 5. Effect of Biot number on concentration and temperature profile

Influence of dimensionless parameters ηc and ηT

The influence of intraparticle diffusion parameters ηc and ηT on the profiles of concen-
tration and temperature are discussed in fig. 6. Figures 6(a) and 6(b) depict the effect of ηT for 
a fixed value of ηc, while in figs. 6(c) and 6(d) display the influence of ηc for a fixed ηT. Values 
of other parameters are listed in tab. 1. The variation in ηT has not changed the concentration 
profile, while the variation in ηc influences the band broadening of concentration profile. The 
concentration profile is broadened for small ηc. The amplitudes of temperature fluctuations in-
creases for ηc = 3.1 and ηT = 18.2 and then decreases. Further, significant fluctuations are noticed 
in the temperature profile for different values of ηc. 

Effect of the ratio ρScS
P /ρLcL

P 

Figure 7 depicts that how a variation in the ratioρScS
P /ρLcL

P influences the temperature 
and concentration profiles, which was taken unity in the previous calculations at Tinj = Tinit. As 
this ratio varies the mean retention times of the concentration and the temperature profiles, 
it needs to be discussed separately. Figure 7(a) display the plots of profile for ρLcL

P /ρLcL
P = 1 

obtained by taking ρLcL
P = 40 kJ/𝓁K = ρLcL

P. For the considered parameters, the fast moving ad-
sorption produces a substantial increase in the temperature, afterward desorption occurs which 
reduces the temperature. The mean holding times of the temperature and concentration profiles 
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Figure 6. Effect of η on concentration and temperature profile

Figure 7. Effect of the ratio ρScS
P/ρLcL

P on concentration and temperature peaks for ΔHA = –10 kJ/mol and 
Tinj = Tinit = Tref; (a) ρScS

P = ρLcL
P = 40,  (b), ρScS

P = 40, ρLcL
P = 4, and (c) ρLcL

P = 40, ρScS
P = 4

are very similar and, thus, the two waves travel at similar speeds. Figure 7(b) shows the plots of 
profile for ρScS

P /ρScL
P = 10 obtained by taking ρScS

P = 40 kJ/ 𝓁K and ρLcL
P = 4 kJ/𝓁K. In the current 

scenario, the concentration profile has larger velocity compared to the thermal wave. Thus, the 
positive peak of temperature due to adsorption is moving together with the concentration pro-
file, while the negative peak of temperature caused by desorption elute later from the column. 
Figure 7(c) shows the plots of profile for ρScS

P /ρLcL
P = 0.1 obtained by taking ρScS

P = 4 kJ/𝓁K and 
ρLcL

P = 40 kJ/𝓁K. Now, the positive peak of adsorption in the temperature is decoupled and mov-
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ing faster than the concentration pulse. On the other hand, the downward peak of desorption 
in the temperature is coupled with the concentration profile, i.e. both are propagating at almost 
the same speed. 

Conclusion

A linearized non-isothermal general rate model was formulated to simulated dynamics 
of concentration and temperature profiles in a thermally insulated liquid chromatographic col-
umn. The solution of the model was derived analytically to analyze the effects of temperature 
variations on the chromatographic system performance. The Laplace transform, the eigen-de-
composition technique, and a conventional technique for the solution of ODE were jointly used 
to solve the coupled system of differential equations. Various case studies were carried out for 
analyzing the influence of system parameters on the performance of the column. To access the 
range of utilization of derived analytical solutions, the numerical results were also obtained by 
applying a HR-FVS and were compared with the analytical results. It was found that enthalpy 
of adsorption, ratio of specific heats and temperature of the injected sample are responsible for 
temperature variation inside the column. The analytical solutions obtained are helpful for fur-
ther advancements in non-isothermal liquid chromatography. 
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