International Scientific Journal


A novel numerical computing framework through Lobatto IIIA method is presented for the dynamical investigation of nanofluidic problem with Williamson fluid flow on a stretching sheet by considering the thermal slip and velocity. The impact of thermophoresis and Brownian motion on phenomena of heat transfer are explored by using Buongiorno model. The governing non-linear partial differential system representing the mathematical model of the Williamson fluid is transformed in to a system of ODE by incorporating the competency of non-dimensional similarity variables. The dynamics of the transformed system of ODE are evaluated through the Lobatto IIIA numerically. Sufficient graphical and numerical illustrations are portrayed in order to investigate and analyze the influence of physical parameters: Williamson parameter, Prandtl number, Lewis number, Schmidt number, ratio of diffusivity parameter, ratio of heat capacitance parameter on velocity, temperature, and concentration fields. The numerically computed values of local Nusselt number, local Sherwood number, and skin friction coefficient are also inspected for exhaustive assessment. Moreover, the accuracy, efficiency and stability of the proposed method is analyzed through relative errors.
PAPER REVISED: 2021-03-20
PAPER ACCEPTED: 2021-04-03
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2021, VOLUME 25, ISSUE Issue 4, PAGES [2795 - 2805]
  1. M. M. Bhatti, M. M. Rashidi, Effects of thermo-diffusion and thermal radiation on williamson nanofluid over a porous shrinking/stretching sheet, Journal of Molecular Liquids 221 (2016) 567-573.
  2. M. Awais, E. S. Awan, S. U. Rehman, M. A. Z. Raja, et al., Hydro-magnetic falkner-skan fluid rheology with heat transfer properties, Thermal Science (24) (2020) 339-346.
  3. S. Saleem, H. Firdous, S. Nadeem, A. Khan, Convective heat and mass transfer in magneto walter's b nanofluid flow induced by a rotating cone, Arabian Journal for Science and Engineering 44 (2) (2019) 1515-1523.
  4. S. Nadeem, S. Hussain, Flow and heat transfer analysis of williamson nanofluid, Applied Nanoscience 4 (8) (2014) 1005-1012.
  5. A. Hamid, M. Khan, et al., Numerical simulation for heat transfer performance in unsteady flow of williamson fluid driven by a wedge-geometry, Results in Physics 9 (2018) 479-485.
  6. M. Rashid, M. I. Khan, T. Hayat, M. I. Khan, A. Alsaedi, Entropy generation in flow of ferromagnetic liquid with nonlinear radiation and slip condition, Journal of Molecular Liquids 276 (2019) 441-452.
  7. R. Ahmad, M. Mustafa, T. Hayat, A. Alsaedi, Numerical study of mhd nanofluid flow and heat transfer past a bidirectional exponentially stretching sheet, Journal of Magnetism and Magnetic Materials 407 (2016) 69-74.
  8. Y. Bai, X. Liu, Y. Zhang, M. Zhang, Stagnation-point heat and mass transfer of mhd maxwell nanofluids over a stretching surface in the presence of thermophoresis, Journal of Molecular Liquids 224 (2016) 1172-1180.
  9. S. A. Shehzad, T. Hayat, A. Alsaedi, M. A. Obid, Nonlinear thermal radiation in three-dimensional flow of jeffrey nanofluid: a model for solar energy, Applied Mathematics and Computation 248 (2014) 273-286.
  10. W. Ibrahim, Magnetohydrodynamic (mhd) boundary layer stagnation point flow and heat transfer of a nanofluid past a stretching sheet with melting, Propulsion and Power Research 6 (3) (2017) 214-222.
  11. S. Reddy, K. Naikoti, M. M. Rashidi, Mhd flow and heat transfer characteristics of williamson nanofluid over a stretching sheet with variable thickness and variable thermal conductivity, Transactions of A. Razmadze Mathematical Institute 171 (2) (2017) 195-211.
  12. F. A. Soomro, R. U. Haq, Q. M. Al-Mdallal, Q. Zhang, Heat generation/absorption and nonlinear radiation effects on stagnation point flow of nanofluid along a moving surface, Results in physics 8 (2018) 404-414.
  13. B. Prasannakumara, B. Gireesha, M. Krishnamurthy, K. G. Kumar, Mhd flow and nonlinear radiative heat transfer of sisko nanofluid over a nonlinear stretching sheet, Informatics in Medicine Unlocked 9 (2017) 123-132.
  14. M. Alam, M. Ali, M. Alim, M. H. Munshi, M. U. Chowdhury, Solution of falkner-skan unsteady mhd boundary layer flow and heat transfer past a moving porous wedge in a nanofluid, Procedia engineering 194 (2017) 414-420.
  15. A. Bellen, N. Guglielmi, A. E. Ruehli, Methods for linear systems of circuit delay differential equations of neutral type, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 46 (1) (1999) 212-215.
  16. B. N. Ryland, R. I. McLachlan, On multisymplecticity of partitioned runge-kutta methods, SIAM Journal on Scientific Computing 30 (3) (2008) 1318-1340.
  17. I. Uddin, R. Akhtar, M. A. R. Khan, Z. Zhiyu, S. Islam, M. Shoaib, M. A. Z. Raja, Numerical treatment for fluidic system of activation energy with non-linear mixed convective and radiative flow of magneto nanomaterials with navier's velocity slip, AIP Advances 9 (5) (2019) 055210. 11
  18. A. H. Nagoor, E. S. Alaidarous, M. T. Sabir, M. Shoaib, M. A. Z. Raja, Numerical treatment for three-dimensional rotating flow of carbon nanotubes with darcy-forchheimer medium by the lobatto iiia technique, AIP Advances 10 (2) (2020) 025016.
  19. I. Ahmad, T. N. Cheema, M. A. Z. Raja, S. E. Awan, N. B. Alias, S. Iqbal, M. Shoaib, A novel application of lobatto iiia solver for numerical treatment of mixed convection nanofluidic model, Scientific Reports 11 (1) (2021) 1-16.
  20. M. Shoaib, M. A. Z. Raja, M. T. Sabir, M. Awais, S. Islam, Z. Shah, P. Kumam, Numerical analysis of 3-d mhd hybrid nanofluid over a rotational disk in presence of thermal radiation with joule heating and viscous dissipation effects using lobatto iiia technique, Alexandria Engineering Journal 60 (4) (2021) 3605-3619.
  21. L. A. Lund, Z. Omar, I. Khan, Darcy-forchheimer porous medium effect on rotating hybrid nanofluid on a linear shrinking/stretching sheet, International Journal of Numerical Methods for Heat & Fluid Flow.
  22. V. Vucheva, N. Kolkovska, High order symplectic finite difference scheme for double dispersion equations, in: AIP Conference Proceedings, Vol. 2321, AIP Publishing LLC, 2021, p. 030037.
  23. M. Versaci, N. Mammone, C. Ieracitano, F. C. Morabito, Micropumps for drug delivery systems: a new semi-linear elliptic boundary-value problem, Computational and Applied Mathematics 40 (2) (2021) 1-21.
  24. L. F. Shampine, J. Kierzenka, M. W. Reichelt, et al., Solving boundary value problems for ordinary differential equations in matlab with bvp4c, Tutorial notes 2000 (2000) 1-27.

© 2024 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence