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A novel numerical computing framework through Lobatto IIIA method is present-
ed for the dynamical investigation of nanofluidic problem with Williamson fluid 
flow on a stretching sheet by considering the thermal slip and velocity. The im-
pact of thermophoresis and Brownian motion on phenomena of heat transfer are 
explored by using Buongiorno model. The governing non-linear partial differen-
tial system representing the mathematical model of the Williamson fluid is trans-
formed in to a system of ODE by incorporating the competency of non-dimen-
sional similarity variables. The dynamics of the transformed system of ODE are 
evaluated through the Lobatto IIIA numerically. Sufficient graphical and numeri-
cal illustrations are portrayed in order to investigate and analyze the influence of 
physical parameters: Williamson parameter, Prandtl number, Lewis number, 
Schmidt number, ratio of diffusivity parameter, ratio of heat capacitance parame-
ter on velocity, temperature, and concentration fields. The numerically computed 
values of local Nusselt number, local Sherwood number, and skin friction coeffi-
cient are also inspected for exhaustive assessment. Moreover, the accuracy, effi-
ciency and stability of the proposed method is analyzed through relative errors. 

Key words: Williamson nanofluid, slip conditions, stretching sheet,  
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Introduction 

Fluid mechanics is a well-known class of physical sciences which deals about the 

fluids behavior whether they are stationary or moving. It plays an essential role to measure the 

tornado vorticity, to model the Jupiter red spot, or analyzed the impact of subatomic particles 

in a betatron, etc. Moreover, it facilitates the base for combustion and propulsion, oceanogra-

phy and meterology, for particle physics and biofluids, etc. The materials including polymer 

melts and natural products, biological fluids and agricultural waste, soap solutions, lavas, and 

magmas are exhibiting the characteristics of non-Newtonian fluid flows. 

–––––––––––––– 
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Nanofluid is a special class of fluids which is composed of base fluid with nano-

size particles. Diverse metals such as copper, silicon, and aluminum prescribed the nanopar-

ticles. It is preliminary noted that the shape of the nanoparticles may be like spherical, rod-

like and tubular. Basically, the nanoparticles are used in base fluid to enlarge the heat trans-

fer characteristics such as thermal conductivity, radiation, and convection. The primary in-

tent of nanofluids is to enlarge the thermal conductivity of the base fluids. There are numer-

ous industrial and technological fields in which nanofluids mostly used are air conditioning, 

biomedicine, nuclear reactor, radiators, hybrid power engines, transportation, and chemical 

productions, etc. 

The name of Williamson fluid has been introduced firstly by Williamson in 1929. 

He developed the mathematical equations of the Williamson fluid to investigate their flow 

properties and behavior along with the experimentally derived results [1]. The approach of 

boundary-layer flow dynamics was introduced by Prandtl in 1904. He explained the major 

differences between the inviscid and viscid flow using boundary layer approach [2]. The first 

study on flow of boundary-layers over a stretching sheet model was conducted by Sakiadis 

and his fellow in 1961 [3]. Further, the mathematical system of equations of boundary-layer 

flow involving Williamson nanofluid were formulated by [4]. The analysis of heat transport 

of Williamson nanofluid in the presence of thermal radiations and slip velocity have a abun-

dan range of applications in production of glass-fibers and papers, production of polymer ex-

trusion, copper wire drawing and in various plastic industries [5]. The slip condition is as-

sumed in stretching sheet system of Williamson nanofluid flow because the existance of na-

noparticles creates the links between solid boundary and fluid slip velocity [6]. Ahmad et al. 
[7] investigated the MHD bi-directional nanofluid flow past an exponentially stretching sheet. 

They concluded that exponent temperature parameter at surface of sheet is the prime factor 

which leads to enlarge the rate of heat transport. Bai et al. [8] analyzed the impacts of Max-

well nanofluids flow with diffusion parameter through a stretching surface using homotopy 

analysis method. Their consequences revealed that heat transport rate is a reducing function of 

thermophoresis. In other treatments [7], Patel model explore the properties of heat transfer 

with thermal radiations. They computed the numerical solution to the governing problems in 

computer software by utilizing famous Runge-Kutta-Fehlberg technique. A solar energy mod-

el was formulated for 3-D MHD flow of Jeffery nanofluid to investigate the effects of Brown-

ian motion and thermophoresis, etc. [9]. Ibrahim [10] examined numerically the stagnation-

point nanofluid flow for melting heat transport past a stretched sheet. Reddy et al. [11] found 

the numerical solution of Williamson nanofluid flow along with varying thermal conductivity 

and thickness past a stretching sheet by utilizing spectral quasi-linearization technique. The 

stagnation point flow with heat generation/aborption along with radiation effects through a 

moving wedge were studied in [12]. They utilized finite-difference solver to the governing 

equations for numerical results and concluded that radiation parameter upgrade the heat 

transport rate. 

The heat transport of Sisko nanofluid with non-linear radiations through a stretching 

sheet were examined by [13]. They reported that velocity profile become decreasing by rais-

ing the Sisko parameter. Alam et al. [14] investigated the flow of MHD and unsteady nanoflu-

id through a moving wedge. They found that stronger magnetic parameter raise the velocity 

profile. The numerical behavior of delay differential equation is also observed by using Lo-

batto IIIA procedure [15]. The Hamiltonian type PDE like non-linear Shero-dinger equation 

and non-linear wave equation are tackled numerically through an effective, and reliable com-

putational solver known as Lobatto IIIA scheme [16]. Numerical solution of Sisko fluid in-
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volving nanomaterial by Lobatto IIIA solver [17]. Numerical analysis of mixed convection 

along with Navier slip velocity under activation energy for the flow of magnetonanomaterials 

model by Lobatto IIIA approach [17]. A reliable study of Lobatto IIIA solver in Darcy-

Forchheimer model for carbon nano-tubes with rotating flow in 3-D [18]. Moreover, in 2021 

era the different fluid dynamics model are numerically investigated through Lobatto IIIA in-

cluding, nanofluidic model with mixed convection to investigate the effect of involved pa-

rameters in the velocities and temperature profiles [19], 3-D MHD-hybrid nanofluid flowing 

over the rotating disk along viscous dissipation and Joule heating effects in the presence of 

thermal radiation [20]. Furthermore, Al2O3-Cu-H2O hybrid nanofluidic problem over the ro-

tating with stretching/shrinking sheet is numerically studied through Lobatto IIIA solver un-

der the effect of Darcy-Forchheimer porous medium [21], double dispersion equation [22], 

drug delivery system [23]. The salient features of the study are briefly highlighted as follows. 

– A novel numerical investigation with Lobatto IIIA is introduced for the dynamical study 

of nanofludic Williamson flow on a stretching sheet considering velocity and thermal 

slips conditions. 

– The primary concept of boundary-layer fluid flow model is incorporated to establish PDE 

of the dynamical system, and these PDE are transformed into relevant ODE by the com-

petency of non-dimensional similarity variable approach. 

– The application of Lobatto IIIA based finite difference numerical scheme to study the ve-

locity, temperature and concentration profiles for different scenarios of nanofluidic Wil-

liamson flow model. 

– Lobatto IIIA numerical scheme is exploited to compute the data of skin friction coeffi-

cient, local Nusselt, and Sherwood number for exhaustive analysis. 

Modeling of flow equations 

Consider the steady state and 2-D flow of in-

compressible Williamson fluid along with effect of 

velocity and thermal slips past through a stretching 

sheet are depicted in fig 1. In this fluidic model,  

uw = cx acts as a linear velocity on the surface of 

the sheet while the measured co-ordinate along the 

direction of stretched surface is denoted by x and c 
behave like a constant. The temperature of wall de-

fined as Tw = bx2 + T∞ in this model. 

The governing fluidic time independent 

boundary-layer transport equations for stretching 

sheet geometry are given as: 
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Figure 1. Geometry of physical flow 
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The appropriated boundary conditions are: 
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The similarity variables are introduced: 
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The non-dimensional coupled system of ODE for stretching sheet model after 

solving PDE of eqs. (2)-(4) by inserting transformations defined in (6) are:  

 2 = 0f f f f f f        (7) 
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where velocity, temperature and concentration, f, θ, and ϕ depend of η, while the prime 

indicates differentiation of said independent variable η. After solving eqs. (5) and (6), the 

transformed boundary conditions are: 
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The fluidic physical parameters such as Williamson parameter, λ, Prandtl number, 

Lewis number, Schmidt number, ratio of diffusivity parameter, Nt, and ratio of heat 

capacitance parameter, Nc, are defined: 

 

3
*

w
w

w

2
, Pr , Le , Sc

( )
, ( )

( )

B B

p pB

T

c
x

D D

CT D C C
Nt Nc C C

D T T C

  
 

 




 




   


  



 (11) 

 The skin friction, Nusselt number, and Sherwood number are represented with ,fC  

Nu,  and Sh,  respectively and are expressed: 

 w w m
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where the shear stress, heat flux, and mass flux are denoted by τw, qw, and qm, respectively and 

are given: 
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After solving eqs. (12) and (13) the most interesting dimensionless form of skin 

friction, local Nusselt, and Sherwood numbers becomes: 

 
Nu Sh

Re = (0) (0),  = (0),  = (0)
2 Re Re

fC f f


        (14) 

Results and discussion 

The governing fluidic non-linear partial differential system of the Williamson fluidic 

model for stretching sheet geometry are altered into ordinary differential systems by utilizing 

similarity variables approach. 

After that, the transformed coupled set of ODE eqs. (7)-(9) are handled numerically 

subject to the attached boundary conditions eq. (10) through Lobatto IIIA technique with the 

help of MATLAB routine bvp4c as per procedure shown in fig 2. The detail description of the 

proposed methodology is available in [24]. The action of physical fluidic parameters such as 

λ, Pr, Le, Sc, ratio of diffusivity parameter, Nt, and ratio of heat capacitance parameter, Nc, on 

dimensionless stream function f (η), velocity field f´ (η), temperature field θ(η), and concen-

tration field ϕ(η) are observed by plotting graphs. Table 1 illustrated the fluidic parameters 

Variation for the numerical simulation of Williamson fluidic system. 

 

Figure 2. Working flow chart of fluidic model 
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Table 1. Parameters variation of the  
proposed model 

Index C-1 C-2 C-3 C-4 

δ 0.4 0.8 1.2 1.6 

γ 0.3 0.4 0.6 0.9 

λ 1.0 1.5 2.0 2.5 

Pr 0.0 0.4 0.8 1.2 

Nc 0.2 0.4 0.6 0.8 

Le 0.25 0.75 1.25 1.75 

Nt 2.0 4.0 6.0 8.0 

Sc 4.0 6.0 8.0 10 
 

 Table 2. Nusselt number analysis for  
proposed model 

Index C-1 C-2 C-3 C-4 

δ 0.7687 0.7448 0.7280 0.7146 

γ 1.9018 1.3796 1.0819 0.8897 

λ 1.2228 1.2151 1.2038 1.1814 

Pr 1.0557 1.1708 1.2038 1.3056 

Nc 1.1850 1.1283 1.0709 1.0138 

Le 0.8651 0.9820 1.0464 1.0860 

Nt 0.0522 0.0626 0.0766 0.0887 

Sc 1.2234 1.2157 1.2102 1.2059 
 

Figures 3(a) and 3(b) elucidate the impact of Nc on f and f´, respectively. The func-

tion f and f´ depicted decreasing behavior by increasing Nc. Figures 3(c) and 3(d) render the 

impacts of Nc on θ and ϕ, respectively. The value of θ and ϕ increases by increasing Nc. Fig-

ure 3(e) narrated the effect of Nt on θ(η) and while fig. 3(f) portrays the effects of Nt on ϕ(η). 

The temperature profile θ is reducing while the concentration profile ϕ is increasing gradually 

for increased values of Nt. Figures 4(a) and 4(b) elaboratively present the actions of f and θ 
against η for different values of δ. 

 

Figure 3. Impact of Nc on f, f´, θ, and ϕ while of Nt on θ and ϕ; (a) f for Nc variation, (b) f´ for Nc 
variation, (c) θ for Nc variation, (d) ϕ for Nc variation, (e) θ for Nt variation, and (f) ϕ for Nt variation  

(for color image see journal web site) 

Both f´ and θ reduced by increasing δ. Figures 4(c) and 4(d) rendered the impacts of 

θ and f graphically for various values of δ. The results indicates that θ(η) and ϕ(η) increase by 

increment in value of δ. 

Figures 4(e) and 4(f) illuminated the influence of Lewis number, on θ and ϕ, respec-

tively. The temperature curve reducing all the time but concentration curve increase initially 
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and after a certain limit, it become decreasing by enlargement in value of Le. Figures 5(a) and 

5(b) demonstrate the action of f and f´ for distinct values of λ. The results clarify that curves of 

f and f´ gone downward for increasing value of λ. The consequences of λ on θ and ϕ are de-

picted in figs. 5(c) and 5(d), respectively. The values of f (η) and f´(η) significantly boosts 

with increment in λ. Figures 5(e) and 5(f) display the consequences of θ and ϕ for η by taking 

sundry values of Schmidt number, respectively. The θ(η) increases while ϕ(η) decreases for 

increment in the values of Schmidt number. Figures 6(a) and 6(b) demonstrate the impacts of 

γ on f and θ, respectively. Both f and ϕ decrease by increasing γ. The impact of Prandtl num-

ber on f , θ, and ϕ are shown graphically in figs. 6(d)-6(f), respectively. The increment in 

magnitude of Prandtl number leads to dropped the value of all three f , θ, and ϕ profiles. 

 

Figure 4. Impact of δ on f´, θ, ϕ, and f while of Le on θ and ϕ; (a) f´ for δ variation, (b) θ for δ variation, 
(c) ϕ for δ variation, (d) f for δ variation, (e) θ for Le variation, (f) ϕ for Le variation 

The computed numerical data of local Nusselt number, Nt, are presented in tab. 2. It 

is seen that local Nusselt number grow by raising Nt, Le, and Pr while decay for δ, β, λ, Nc, 
and Sc, respectively. The numerical values of local Sherwood number are listed in tab. 3. The 

parameters Nc, Sc, and β enhanced while Nt, Le, Pr, δ, and λ diminish the local Sherwood 

number, respectively. The numerical values of skin friction coefficient are tabulated in tab. 5. 

The fluidic parameters δ enhance and λ reduce the skin friction. Table 4 is originated to nar-

rate the numerical data of residual error acquired by proposed numerical approach during the 

numerical execution, which proved the higher accuracy obtained by this approach. Table 6 il-

luminated the numerical values of mesh points evaluated by proposed scheme for each fluidic 

sundry parameter. The numerically evaluated data of ODE and boundary conditions for every 

case of involved sundry fluidic parameter are portrayed in tabs. 7 and 8, respectively. 

Concluding remarks 

The effect of thermal and velocity slips conditions on flow of Williamson nanofluid 

past a stretching sheet are investigated numerically by employing the computation strength of 

Lobatto IIIA method. The outcomes of the presented nanofluidic Williamson model are pro-

vided as follows. 
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Table 3. Sherwood number analysis  
of proposed model 

Index C-1 C-2 C-3 C-4 

δ 1.0835 0.9299 0.8373 0.7719 

γ 0.5610 0.7585 0.8711 0.9439 

λ 0.8544 0.8291 0.7946 0.7384 

Pr 0.9057 0.8448 0.8015 0.7683 

Nc 0.8376 0.8697 0.9015 0.9322 

Le  0.1729 −0.1898 −0.1898 −0.2745 

Nt 0.9156 0.5210 0.5210 0.4290 

Sc 0.2248 0.9748 0.9748 1.2453 
 

 Table 4. Mesh points analysis  
of proposed model 

Index C-1 C-2 C-3 C-4 

δ 971 945 1102 1078 

γ  1193 1198 1198 958 

λ  1198 1198 959 364 

Pr 1998 1198 962 960 

Nc 1998 1198 1198 913 

Le  972 966 968 968 

Nt 1114 1089 1045 1016 

Sc 913 1198 1198 1198 
 

 

Table 5. Skin friction analysis for  
proposed model 

Index C-1 C-2 C-3 C-4 

δ −0.6544 −0.4531 −0.3528 −0.2909 

γ −0.5327 −0.5327 −0.5327 −0.5327 

λ −0.5040 −0.5260 −0.5575 −0.6183 

Pr −0.5327 −0.5327 −0.5327 −0.5327 

Nc −0.5327 −0.5327 −0.5327 −0.5327 

Le  −0.5327 −0.5327 −0.5327 −0.5327 

Nt −0.3961 −0.3961 −0.3961 −0.3961 

Sc −0.5327 −0.5327 −0.5327 −0.5327 
 

 

Table 6. Relative error analysis of  
proposed model 

Index C-1 C-2 C-3 C-4 

δ 8.263·10−15 4.010·10−15 2.720·10−15 1.992·10−15 

γ 3.630·10−14 7.247·10−15 6.354·10−15 5.783·10−15 

λ 7.019·10−15 6.769·10−15 5.061·10−14 9.752·10−13 

Pr 4.973·10−15 6.141·10−15 7.355·10−15 8.572·10−15 

Nc 6.279·10−15 5.583·10−15 5.101·10−15 1.969·10−14 

Le  2.788·10−14 5.204·10−14 5.990·10−14 6.195·10−14 

Nt 3.510·10−13 3.962·10−14 1.921·10−15 2.515·10−16 

Sc 5.403·10−15 5.090·10−15 9.028·10−15 1.557·10−14 
 

 

 The numerical results revealed that velocity profile decrease while temperature and con-

centration profiles enhance with an increment in slip parameter. 

 The temperature θ and concentration ϕ profiles reduced with increase in the values of the 

Prandtl number. 

 The increment in Williamson parameter leads to increased in both temperature and con-

centration profiles. Additionally, for larger Williamson parameter the boundary layer 

thickness increases. 

 The temperature, θ, and concentration, ϕ, profiles decreased by enhancing values of ther-

mal parameter. 

 The proposed method provides better accuracy analysis through relative errors. 

 The local Nusselt number grow up for Prandtl and Lewis numbers while reduced for var-

ying values of velocity and thermal slip parameters. 

 The local Sherwood number enhanced for thermal parameter and declined for velocity 

slip parameter. 

 The local Skin friction declined for velocity slip parameter and increase by changing val-

ues of Williamson parameter. 
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In future, one may exploit intelligent computing paradigm for solving Williamson 

nanofluidic model. 

Table 7. Numerical data of ODE for  
proposed model 

Index C-1 C-2 C-3 C-4 

δ 37651 37157 35739 35283 

γ 37468 37563 37563 37404 

λ 37563 37563 35825 64637 

Pr 37563 37563 37480 37442 

Nc 37563 37563 37563 34951 

Le 37670 37556 37594 37594 

Nt 39570 39095 34657 34106 

Sc 36549 37563 37563 37563 
 

 

Table 8. Numerical data of boundary 
conditions for proposed model 

Index C-1 C-2 C-3 C-4 

δ 120 120 98 97 

γ 98 98 98 120 

λ 98 98 118 189 

Pr 98 98 120 120 

Nc 98 98 98 118 

Le 120 120 120 120 

Nt 119 119 98 98 

Sc 120 98 98 98 
 

 
Figure 5. Impact of λ on f, f´, θ, and ϕ while of Sc on θ and ϕ; (a) f for λ variation, (b) f´ for λ variation, 
(c) θ for λ variation, (d) ϕ for λ variation, (e) θ for Sc variation, and (f) ϕ for Sc variation 
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Figure 6. Impact of γ on f , θ and ϕ while of Pr on f , θ, and ϕ; (a) f for varying values of γ, (b) θ for γ 
variation, (c) ϕ for varying values of γ, (d) f for Pr variation, (e) θ for Pr variation, and (f) ϕ for Pr 

variation 
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