THERMAL SCIENCE
International Scientific Journal
THE ULT-HSS HYBRID ITERATION METHOD FOR SYMMETRIC SADDLE POINT PROBLEMS
ABSTRACT
This paper proposes a hybrid iteration method for solving symmetric saddle point problem arising in CFD. It is an implicit alternative direction iteration method and named as the ULT-HSS (upper and lower triangular, Hermitian and skew- Hermitian splitting) method. The convergence analysis is provided, and the necessary and sufficient conditions are given for the convergence of the method. Some practical approaches are formulated for setting the optimal parameter of the method. Numerical experiments are given to show its efficiency.
KEYWORDS
PAPER SUBMITTED: 2020-01-15
PAPER REVISED: 2020-06-01
PAPER ACCEPTED: 2020-06-01
PUBLISHED ONLINE: 2021-03-27
THERMAL SCIENCE YEAR
2021, VOLUME
25, ISSUE
Issue 3, PAGES [2377 - 2384]
- Elman, H. C., et al., Finite Elements and Fast Iterative Solvers: With Applications in Incompressible Fluid Dynamics, Numerical Mathematics and Scientific Computation, Oxford University Press, New York, USA, 2005
- Silvester, D., Wathen, A., Fast Iterative Solution of Stabilised Stokes Systems, Part II: Using General Block Preconditioners, SIAM Journal on Numerical Analysis, 31 (1994), 5, pp. 1352-1367
- Li, X., et al., Numerical Study of Heat Transfer Mechanism in Turbulent Supercritical CO2 Channel Flow, Journal of Thermal Science and Technology, 3 (2008), 1, pp. 112-123
- Keung, Y., Zou, J., An Efficient Linear Solver for Non-linear Parameter Identification Problems, SIAM Journal on Scientific Computing, 22 (2000), 5, pp. 1511-1526
- Benzi, M., et al., Numerical Solution of Saddle Point Problems, Acta Numerica, 14 (2005), 1, pp. 1-137
- Bramble, J. H., et al., Analysis of the Inexact Uzawa Algorithm for Saddle Point Problems, SIAM Journal on Numerical Analysis, 34 (1997), 3, pp. 1072-1092
- Lu, J. F., Zhang, Z. Y., A Modified Non-linear Inexact Uzawa Algorithm with a Variable Relaxation Parameter for the Stabilized Saddle Point Problem, SIAM Journal on Matrix Analysis and Applications, 31 (2010), 4, pp. 1934-1957
- Bai, Z. Z., et al., On Generalized Successive Overrelaxation Methods for Augmented Linear Systems, Numerische Mathematik, 102 (2005), 1, pp. 1-38
- Guo, P., et al., A Modified SOR-like Method for the Augmented Systems, Journal of Computational and Applied Mathematics, 274 (2015), Jan., pp. 58-69
- Golub, G. H., et al., SOR-like Methods for Augmented Systems, BIT, 41 (2001), 1, pp. 71-85
- Elman, H. C., Golub, G. H., Inexact and Preconditioned Uzawa Algorithms for Saddle Point Problems, SIAM Journal on Numerical Analysis, 31 (1994), 6, pp. 1645-1661
- Cao, Z. H., Fast Uzawa Algorithm for Generalized Saddle Point Problems, Applied Numerical Mathematics, 46 (2003), 2, pp. 157-171
- Bai, Z. Z., et al., Hermitian and Skew-Hermitian Splitting Methods for Non-Hermitian Positive Definite Linear Systems, SIAM Journal on Matrix Analysis and Applications, 24 (2003), 3, pp. 603-626
- Bai, Z. Z., et al., Preconditioned Hermitian and Skew-Hermitian Splitting Methods for Non-Hermitian Positive Semidefinite Linear Systems, Numerische Mathematik, 98 (2004), Mar., pp. 1-32
- Cao, Z. H., Positive Stable Block Triangular Preconditioners for Symmetric Saddle Point Problems, Applied Numerical Mathematics, 57 (2007), 8, pp. 899-910
- Jiang, M. Q., et al., On Parameterized Block Triangular Preconditioners for Generalized Saddle Point Problems, Applied Mathematics and Computation, 216 (2010), 6, pp. 1777-1789
- Lu, J. F., A Generalization of Parameterized Block Triangular Preconditioners for Generalized Saddle Point Problems, Applied Mathematics and Computation, 241 (2014), Aug., pp. 25-35
- Perugia, I., Simoncini, V., Block-diagonal and Indefinite Symmetric Preconditioners for Mixed Finite Element Formulations, Numerical Linear Algebra with Applications, 7 (2000), 7-8, pp. 585-616
- Simoncini, V., Block Triangular Preconditioners for Symmetric Saddle-point Problems, Applied Numerical Mathematics, 49 (2004), 1, pp. 63-80
- Benzi, M., Golub, G. H., A Preconditioner for Generalized saddle point problems, SIAM Journal on Matrix Analysis and Applications, 26 (2004), 1, pp. 20-41
- Bai, Z. Z., Golub, G. H., Accelerated Hermitian and Skew-Hermitian Splitting Iteration Methods for Saddle-point Problems, IMA Journal of Numerical Analysis, 27 (2007), 1, pp. 1-23
- Zheng, Q. Q., Ma, C. F., A Class of Triangular Splitting Methods for Saddle Point Problems, Journal of Computational and Applied Mathematics, 298 (2016), May, pp. 13-23
- Zheng, Q. Q., Lu, L. Z., On Semi-convergence of ULT Iterative Method for the Singular Saddle Point Problems, Computers and Mathematics with Applications, 72 (2016), 6, pp. 1549-1555