THERMAL SCIENCE

International Scientific Journal

Authors of this Paper

External Links

THE ULT-HSS HYBRID ITERATION METHOD FOR SYMMETRIC SADDLE POINT PROBLEMS

ABSTRACT
This paper proposes a hybrid iteration method for solving symmetric saddle point problem arising in CFD. It is an implicit alternative direction iteration method and named as the ULT-HSS (upper and lower triangular, Hermitian and skew- Hermitian splitting) method. The convergence analysis is provided, and the necessary and sufficient conditions are given for the convergence of the method. Some practical approaches are formulated for setting the optimal parameter of the method. Numerical experiments are given to show its efficiency.
KEYWORDS
PAPER SUBMITTED: 2020-01-15
PAPER REVISED: 2020-06-01
PAPER ACCEPTED: 2020-06-01
PUBLISHED ONLINE: 2021-03-27
DOI REFERENCE: https://doi.org/10.2298/TSCI200115128L
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2021, VOLUME 25, ISSUE Issue 3, PAGES [2377 - 2384]
REFERENCES
  1. Elman, H. C., et al., Finite Elements and Fast Iterative Solvers: With Applications in Incompressible Fluid Dynamics, Numerical Mathematics and Scientific Computation, Oxford University Press, New York, USA, 2005
  2. Silvester, D., Wathen, A., Fast Iterative Solution of Stabilised Stokes Systems, Part II: Using General Block Preconditioners, SIAM Journal on Numerical Analysis, 31 (1994), 5, pp. 1352-1367
  3. Li, X., et al., Numerical Study of Heat Transfer Mechanism in Turbulent Supercritical CO2 Channel Flow, Journal of Thermal Science and Technology, 3 (2008), 1, pp. 112-123
  4. Keung, Y., Zou, J., An Efficient Linear Solver for Non-linear Parameter Identification Problems, SIAM Journal on Scientific Computing, 22 (2000), 5, pp. 1511-1526
  5. Benzi, M., et al., Numerical Solution of Saddle Point Problems, Acta Numerica, 14 (2005), 1, pp. 1-137
  6. Bramble, J. H., et al., Analysis of the Inexact Uzawa Algorithm for Saddle Point Problems, SIAM Journal on Numerical Analysis, 34 (1997), 3, pp. 1072-1092
  7. Lu, J. F., Zhang, Z. Y., A Modified Non-linear Inexact Uzawa Algorithm with a Variable Relaxation Parameter for the Stabilized Saddle Point Problem, SIAM Journal on Matrix Analysis and Applications, 31 (2010), 4, pp. 1934-1957
  8. Bai, Z. Z., et al., On Generalized Successive Overrelaxation Methods for Augmented Linear Systems, Numerische Mathematik, 102 (2005), 1, pp. 1-38
  9. Guo, P., et al., A Modified SOR-like Method for the Augmented Systems, Journal of Computational and Applied Mathematics, 274 (2015), Jan., pp. 58-69
  10. Golub, G. H., et al., SOR-like Methods for Augmented Systems, BIT, 41 (2001), 1, pp. 71-85
  11. Elman, H. C., Golub, G. H., Inexact and Preconditioned Uzawa Algorithms for Saddle Point Problems, SIAM Journal on Numerical Analysis, 31 (1994), 6, pp. 1645-1661
  12. Cao, Z. H., Fast Uzawa Algorithm for Generalized Saddle Point Problems, Applied Numerical Mathematics, 46 (2003), 2, pp. 157-171
  13. Bai, Z. Z., et al., Hermitian and Skew-Hermitian Splitting Methods for Non-Hermitian Positive Definite Linear Systems, SIAM Journal on Matrix Analysis and Applications, 24 (2003), 3, pp. 603-626
  14. Bai, Z. Z., et al., Preconditioned Hermitian and Skew-Hermitian Splitting Methods for Non-Hermitian Positive Semidefinite Linear Systems, Numerische Mathematik, 98 (2004), Mar., pp. 1-32
  15. Cao, Z. H., Positive Stable Block Triangular Preconditioners for Symmetric Saddle Point Problems, Applied Numerical Mathematics, 57 (2007), 8, pp. 899-910
  16. Jiang, M. Q., et al., On Parameterized Block Triangular Preconditioners for Generalized Saddle Point Problems, Applied Mathematics and Computation, 216 (2010), 6, pp. 1777-1789
  17. Lu, J. F., A Generalization of Parameterized Block Triangular Preconditioners for Generalized Saddle Point Problems, Applied Mathematics and Computation, 241 (2014), Aug., pp. 25-35
  18. Perugia, I., Simoncini, V., Block-diagonal and Indefinite Symmetric Preconditioners for Mixed Finite Element Formulations, Numerical Linear Algebra with Applications, 7 (2000), 7-8, pp. 585-616
  19. Simoncini, V., Block Triangular Preconditioners for Symmetric Saddle-point Problems, Applied Numerical Mathematics, 49 (2004), 1, pp. 63-80
  20. Benzi, M., Golub, G. H., A Preconditioner for Generalized saddle point problems, SIAM Journal on Matrix Analysis and Applications, 26 (2004), 1, pp. 20-41
  21. Bai, Z. Z., Golub, G. H., Accelerated Hermitian and Skew-Hermitian Splitting Iteration Methods for Saddle-point Problems, IMA Journal of Numerical Analysis, 27 (2007), 1, pp. 1-23
  22. Zheng, Q. Q., Ma, C. F., A Class of Triangular Splitting Methods for Saddle Point Problems, Journal of Computational and Applied Mathematics, 298 (2016), May, pp. 13-23
  23. Zheng, Q. Q., Lu, L. Z., On Semi-convergence of ULT Iterative Method for the Singular Saddle Point Problems, Computers and Mathematics with Applications, 72 (2016), 6, pp. 1549-1555

2025 Society of Thermal Engineers of Serbia. Published by the VinĨa Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence