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This paper proposes a hybrid iteration method for solving symmetric saddle point 
problem arising in CFD. It is an implicit alternative direction iteration method 
and named as the ULT-HSS (upper and lower triangular, Hermitian and skew-
Hermitian splitting) method. The convergence analysis is provided, and the nec-
essary and sufficient conditions are given for the convergence of the method. 
Some practical approaches are formulated for setting the optimal parameter of 
the method. Numerical experiments are given to show its efficiency.  
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Introduction 

Consider the following symmetric saddle point problem: 

 
0

T x fA B

y gB

     
=     

    
 (1) 

where ARnn is a symmetric positive definite, B  Rmn(m  n) is of full row rank, and f  Rn 

and g  Rm are two column vectors. Equation (1) arises widely in computational science and 

engineering areas, including CFD [1, 2], thermal science [3], parameter identification [4], 

mixed finite element approximation of elliptic PDE [5, 6], and others. It is well known that 

Navier-Stokes problem or Oseen problem can be used to model the groundwater contamina-

tion transport in porous media [1, 2, 6], and the heat conduction of gas in thermal science [3]. 

Based on Navier-Stokes or Oseen equations with mixed finite element approximation, it fol-

lows the symmetric saddle point problem (1).  

In the past decades, a number of iteration methods and their numerical properties 

have been discussed to solve the saddle point problem (1) in the literature, such as SOR-like 

methods [7-9], Uzawa-type methods [5, 6, 10-12], Hermitian and skew-Hermitian splitting 

(HSS) methods [13, 14], and Krylov subspace iteration methods with various preconditioners 

[15-19]. See the detailed survey by Benzi et al. [5]. Bramble et al. [6] proposed a non-linear 

inexact Uzawa algorithm for generalized saddle point problems. Various extensions and im-

provements of Uzawa-type methods have been widely discussed [10-12]. Based on Hermitian 

and skew-Hermitian splitting of the coefficient matrix of non-Hermitian positive definite line-

ar system Ax = b, Bai et al. [13] introduced a shift parameter, and proposed an implicit alter-
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native direction iteration method named as HSS. The HSS method converges unconditionally 

if the shift parameter is positive. In order to improve the convergence of HSS method, Benzi 

and Golub [20] proposed a preconditioned Krylov subspace method with HSS preconditioner 

for generalized saddle point problems. There are also some improved versions of HSS method 

[14, 21]. Similarly, by means of the upper and lower triangular (ULT) splitting of the coeffi-

cient matrix of (1), Zheng and Ma [22] proposed a ULT iteration method. The semi-

convergence of ULT iterative method for the singular saddle point problems was considered 

in [23]. A natural idea is that combining these two splittings may be helpful to improve the 

convergence of ULT or HSS methods. However, how to apply ULT and HSS splittings results 

in an efficient iteration method, and how to improve the convergence by choosing the relaxed 

parameters, both require detailed analysis.  

In this paper, we will focus on previous two problems. We will apply the ULT and 

HSS splittings, and propose an alternative direction iteration method. For simplicity, we call 

this hybrid method as ULT-HSS method. The convergence conditions are given by analyzing 

its iteration matrix. We also consider the optimality of the relaxed parameters for some special 

cases. Numerical experiments are provided to illustrate the efficiency of ULT-HSS method. 

Notations. In the rest of this paper, Rmn denotes the space of real m  n matrix. For 

any matrix X  Rnn, XT and X–1 stand for its transpose and inverse, respectively.

 

The norm  

 2 is 2-norm of a vector or matrix. Besides, diag(a, b) denotes the diagonal matrix with diag-

onal elements a and b. 

The ULT-HSS hybrid iteration method 

The linear system (1) can be equivalently transformed: 

 
0

Tx x fA B
A

y y gB

      
= =      

−−      
 (2)  

We consider two kinds of matrix splitting of the coefficient matrix A. The first case 

is called as upper and lower block triangular splitting [22]: 

 –A L U=  (3) 

where  

 
0A

L
B Q

 
=  
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,    and 

0

0

TB
U

Q
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with a symmetric positive definite matrix Q  Rnn. The second matrix splitting was based on 

HSS with a shift parameter: 

 ( ) ( )A I H I S = + − −  (4) 

where  

   0, 
0

0 0

A
H

 
=  
 

 and 
0

0

TB
S

B

 −
=  
 

.   Denote i
i

i

x
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y

 
=  
 

 and 
f

b
g

 
=  

− 
 

By combining the ULT and HSS splittings of A, we can obtain the following ULT-

HSS hybrid iteration method: 
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The ULT-HSS algorithm 

The previous implicit alternating direction iterative method can be rewritten: 

 

1 1
1

1 1 1
1 1

1
[ ] 

(

( )

( ) A) Q( ) ( )

T
i i i

T T
i i i i i i

y y I Q BA f B y g

x x A f Ax B y I B I y y



  

− −
+

− − −
+ +

 
= + + − − 

 

= + − − − + + −

 (6) 

By iterative eq. (6), we can simplify it: 

 1i iMz Nz b+ = +  

with 

 

1 1 1 1

1 1 1 1

( ) ( ) 0 ( ) ( )
,

[ ( ) ]( ) 0 [ ( ) ]( )
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Denote the iteration matrix of ULT-HSS method by T, it follows that: 

 

1 1 1 1

1 1 1

1 1

0 ( )

( ) ( ) 1
0

T T T

T

A B I A B Q BA B

T M N I H I S L U
I I Q BA B



 



− − − −

− − −

− −

 − + +
 

= + − =   − +    

 (7) 

Convergence analysis of ULT-HSS method 

In this section, we consider the convergence analysis of the hybrid ULT-HSS meth-

od. By Lemma 1 in [14], the ULT-HSS iteration converges for arbitrary initial guesses  

x0  Rn and y0  Rm to the exact solution A–1b if and only if (T)  1, where (T) is the spec-

tral radius of the iteration matrix T of ULT-HSS. 

In the following theorems, we will show the spectral radius of matrix T, and provide 

the necessary and sufficient conditions for convergence of ULT-HSS method. 

Theorem 1. Assume that A  Rnn and Q  Rmm are symmetric positive definite, and 

B  Rmn is full of row rank. Let 1 1( ) ( )T I H I S L U − −= + +  be the iteration matrix of  

ULT-HSS method, and let 1( )/( )T T Tu BA B u u u −=  and 1 1( )/( ) ˆ T T Tu BA B uQ u u − −=  with 

non-zero vector u  Rm, then the m eigenvalues of T are zero, and the other n eigenvalues sat-

isfy the following equation: 

 
1

1 0ˆ  


− + + =  (8) 

Furthermore, the spectral radius of T is defined by: 

 max max min min

1 1
( ) max 1 ˆ ˆ, 1T    

 

 
= − − − − 

 
 

where max = maxu0, min = minu0, max 0maˆ ˆxu = , and min 0miˆ ˆn .u =  
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Proof. Let us consider an eigenvalue  of the iteration matrix T, then we have: 

 

1 1 1 1

1 1

( )

1
0 ( 1)

T T T
m

T
n

I A B I A B Q BA B

I T
I I Q BA B

 






− − − −

− −

 − +
 

− = = −
 
 


 
+ +



 

 1 11
| ( 1) | 0m T

nI I Q BA B 


− − 
= − + + = 

 
 (9) 

By (9), we have that  = 0 is eigenvalue of T with multiply m, and the other n eigen-

values of T satisfy (8). Then we can obtain the spectral radius of the iteration matrix T, which 

completes the proof. 

Theorem 2. Let: 

1

max max
T T

T

u BA B u

u u


−

= , 
1

min min
T T

T

u BA B u

u u


−

= , 
1 1

max
ˆ max

T T

T

u Q BA B u

u u


− −

=   

and 
1 1

min
ˆ min

T T

T

u Q BA B u

u u


− −

=  

with u  0, then ULT-HSS method converges if and only if: 

 max max
ˆ1

2 


+   (10) 

Furthermore, the optimal parameter * for (T) is given by: 

 * max min

max min2 ˆ ˆ

 


 

+
=

− −
 (11) 

and the corresponding spectral radius is: 

 
* max min

max min

( )T
 


 

−
=

+
 (12) 

Proof. The ULT-HSS method converges if and only if (T)  1, where T is the itera-

tion matrix defined by (7). Obviously, (T)  1 is equivalent to   1, where  represents the 

eigenvalue of T. By (8), it follows that 1 (1/ ) ˆ   = − − .To guarantee the convergence of 

ULT-HSS method, it requires that 1 1 ) 1ˆ(1/  −  − −  . We need to prove that: 

 
1

0 2ˆ 


 +   

Since BA–1BT and Q are symmetric positive definite matrices:  

 
1 ˆ 0 


+   

holds. Besides, ˆ(1/ ) 2  +   is satisfied if max max( ) 2.ˆ1/  +   Thus, ULT-HSS converges 

if and only if (10) is satisfied. 
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Theoretically, the spectral radius (T)  1 achieves its minimum when: 

 max max min min

1 1
1 1ˆ ˆ   

 
− − = + −  

It is easy to obtain the optimal parameter (11) and the corresponding spectral radius 

(12), which completes the proof. 

Since the convergence of ULT-HSS depends on the preconditioned matrix Q, it re-

quires careful analysis on choosing Q and *. We further consider the optimality of  when  

Q = I. In this special case, the iteration matrix T reads as: 

 

1 1 1

1

1
0 ( )

2
0

T T T

T

A B I A B BA B

T

I BA B






− − −

−

 
− + + 

=  
 −
  

 

By Theorems 1 and 2, we have the convergence results for ULT-HSS method with  

Q = I. 
Corollary 1. Assume that A  Rnn is symmetric positive definite, B  Rmn is full of 

row rank, and let max and min be the largest and smallest eigenvalues of BA–1BT, respectively. 

Then the ULT-HSS method with Q = I(  0) converges if and only if: 

 max   (13) 

Besides, the spectral radius is given by: 

 max min

2 2
( ) max 1 , 1T  

 

 
= − − 

 
 (14) 

The optimal  is defined by: 

 *
max min  = +  

and the corresponding spectral radius is: 

 
* max min

max min

( )T
 


 

−
=

+
 

Numerical experiments 

We test a simulated saddle point problem to show the efficiency of the ULT-HSS 

method. For comparison, we also test ULT method [22] and preconditioned GMRES 

(PGMRES) with HSS preconditioner [5, 20]. All the numerical computations are performed 

by MATLAB software on PC with an Intel Core 2 Duo CPU, 2.3 GHz, and 8 GB RAM. 

Consider a saddle point problem (1) with the following submatrices: 

  
6

, 4
6

m m m
m m

m m m

I T I
A B I T O

I I T

− − 
= = − 

− − 
 

where (1,0,1) m m
mT tridiag R =  . We choose the vectors f and g such that the exact solution 

of (1) is 3( , ) (1,1, ,1) .T T T T mx y R=   Both the initial vectors x0 and y0 are set to be zero in 

this example. The iteration schemes are terminated if the current iteration satisfies: 
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2

14

0

10
ir

r

−  

where 

 
T

i i
i

i

f Ax B y
r

g Bx

 − −
=  

−  
 

is the residual vector of system (1) in the ith iteration. 

We let Q = I for ULT-HSS which can be seen as a preconditioner for the Schur 

complement S = BA–1BT. By Corollary 1, the optimal parameters for ULT-HSS iteration are 

defined by: 

 *
max min  = +  

where θmax and θmin are the smallest and the largest non-zero eigenvalues of the Schur com-

plement S, respectively. We perform the ULT method with the optimal: 

 
*

max min

1


 
=

+
 

As pointed out in [20], the original HSS 

method converges slowly. Thus, we test pre-

conditioned GMRES with HSS preconditioner 

(H + I)(S + I). In this example, the parame-

ters of ULT-HSS, ULT, and PGMRES for the 

considered grids are set as 5.6381, 0.1774 and 

1.0508, respectively. 

Table 1 shows the number of iterations, 

CPU time, and the relative error for ULT-HSS, 

ULT and PGMRES. The ULT-HSS method 

outperforms the other two methods. The ULT-

HSS requires the same numbers of iterations as 

ULT to satisfy the terminated condition. Due to 

the optimality of α, the total CPU time for ULT-HSS is slightly less than that of ULT. Alt-

hough the total iteration numbers of PGMRES are less than those of ULT or ULT-HSS, the 

average computational cost for each iteration is larger than those of the rest two methods. 

Figure 1 plots the distribution of CPU time for tested algorithms with different grids. We see 

that the CPU time of these three algorithms increases linearly.  

Table 1. Numerical results of tested algorithms 

Algorithm 
m = 800 m = 1600 m = 2400 

Outer CPU Error Outer CPU Error Outer CPU Error 

ULT-HSS 65 12.96 7.59·10–15 65 54.73 7.63·10–15 65 141.62 7.65·10–15 

ULT 65 13.52 6.62·10–15 65 56.52 6.45·10–15 65 142.33 6.47·10–15 

PGMRES 18 18.69 6.12·10–15 18 78.15 6.25·10–15 18 196.74 6.24·10–15 

 

Figure 1. The CPU time of the tested algorithms 
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Conclusions 

In this paper, a hybrid ULT-HSS method was proposed to solve the symmetric sad-

dle point problems. Comparing with the convergence or numerical results in the literature, we 

had the following two improvements:  

• Convergence conditions for the ULT-HSS method were given. The optimality of relaxed 

parameters was also considered for a special case of the ULT-HSS method.  

• Numerical results shown the advantages of the ULT-HSS method over the original ULT 

method.  

We can conclude that the ULT-HSS method is an efficient method for solving the 

symmetric saddle point problems. Discretization of Navier-Stokes or Oseen equations will re-

sult in a generalized saddle point problem. We will apply this method for generalized saddle 

point problems in our future work. 
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