THERMAL SCIENCE

International Scientific Journal

Authors of this Paper

External Links

TWO-SCALE TRANSFORM FOR 2-D FRACTAL HEAT EQUATION IN A FRACTAL SPACE

ABSTRACT
A 2-D fractal heat conduction in a fractal space is considered by He’s fractal derivative. The two-scale transform is adopted to convert the fractal model to its differential partner. The homotopy perturbation method is used to find the approximate analytical solution.
KEYWORDS
PAPER SUBMITTED: 2019-09-18
PAPER REVISED: 2020-06-14
PAPER ACCEPTED: 2020-06-15
PUBLISHED ONLINE: 2021-03-27
DOI REFERENCE: https://doi.org/10.2298/TSCI190918124W
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2021, VOLUME 25, ISSUE Issue 3, PAGES [2339 - 2345]
REFERENCES
  1. Metzler, R., Klafter, J., The Random Walk's Guide to Anomalous Diffusion: A Fractional Dynamics Approach, Physics Reports-Review Section of Physics Letters, 339 (2000), 1, pp. 1-77
  2. He, J. H., The Simpler, the Better: Analytical Methods for Non-linear Oscillators and Fractional Oscillators, Journal of Low Frequency Noise Vibration and Active Control, 38 (2019), 3-4, pp. 1252-1260
  3. He, J. H., A Tutorial Review on Fractal Spacetime and Fractional Calculus, International Journal of Theoretical Physics, 53 (2014), 11, pp. 3698-3718
  4. Wang, K. L., Wang, K. J., A Modification of the Reduced Differential Transform Method for Fractional Calculus, Thermal Science, 22 (2018), 4, pp. 1871-1875
  5. Wang, K. L., Yao, S. W., A Fractal Variational Principle for the Telegraph Equation with Fractal Derivatives, Fractals, 28 (2020), 4, ID 20500589
  6. He, J. H., Fractal Calculus and Its Geometrical Explanation, Results in Physics, 10 (2018), Sept., pp. 272-276
  7. Wang, Y., et al., A fractal Derivative Model for Snow's Thermal Insulation Property, Thermal Science, 23 (2019), 4, pp. 2351-2354
  8. Liu, H. Y., et al., A Fractal Rate Model for Adsorption Kinetics at Solid/Solution Interface, Thermal Science, 23 (2019), 4, pp. 2477-2480
  9. Wang, Q. L., et al., Fractal Calculus and its Application to Explanation of Biomechanism of Polar Hairs (Vol. 26, 1850086, 2018), Fractals, 27 (2019), 5, ID 1992001
  10. Wang, Q. L., et al., Fractal Calculus and Its Application to Explanation of Biomechanism of Polar Hairs (Vol. 26, 1850086, 2018), Fractals, 26 (2018), 6, ID 1850086
  11. He, J. H., A Fractal Variational Theory for One-Dimensional Compressible Flow in a Microgravity Space, Fractals, 28 (2020), 2, ID 2050024
  12. He, J. H., A Simple Approach to One-Dimensional Convection-Diffusion Equation and Its Fractional Modification for E Reaction Arising in Rotating Disk Electrodes, Journal of Electroanalytical Chemis-try, 854 (2019), Dec., ID 113565
  13. Wei, C.-F., Solving Time-Space Fractional Fitzhugh-Nagumo Equation by Using He-Laplace Decomposition Method, Thermal Science, 22 (2018), 4, pp. 1723-1728
  14. Wei, C-F., Application of the Homotopy Perturbation Method for Solving Fractional Lane-Emden Type Equation, Thermal Science, 22 (2019), 4, pp. 2237-2244
  15. Shen, Y., He, J. H., Variational Principle for a Generalized KdV Equation in a Fractal Space, Fractals, 28 (2020), 4, 20500693
  16. Wei, C-F., Local Frational Heat and Wave Equations with Laguerre Type Derivatives, Thermal Science, 24 (2020), 4, pp. 1-6
  17. Wang, K. L., et al., Physical Insight of Local Fractional Calculus and Its Application to Fractional Kdv-Burgers-Kuramoto Equation, Fractals, 27 (2019), 7, ID 1950122
  18. Ain, Q. T., He, J. H., On Two-Scale Dimension and Its Application, Thermal Science, 23 (2019), 3B, pp. 1707-1712
  19. He, J. H., Ji, F. Y. Two-Scale Mathematics and Fractional Calculus for Thermodynamics, Thermal Science, 23 (2019), 4, pp. 2131-2133
  20. He, J. H., Ain, Q. T., New Promises and Future Challenges of Fractal Calculus: From Two-Scale Thermodynamics to Fractal Variational Principle, Thermal Science, 24 (2020), 2A, pp. 659-681
  21. He, J. H., Homotopy Perturbation Technique, Computer Methods in Applied Mechanics and Engineering, 178 (1999), 3-4, pp. 262-257
  22. Yu, D. N., et al., Homotopy Perturbation Method with an Auxiliary Parameter for Non-Linear Oscillators, Journal of Low Frequency Noise Vibration and Active Control, 38 (2019), 3-4, pp. 1540-1554
  23. Kuang, W. X., et al., Homotopy Perturbation Method with an Auxiliary Term for the Optimal Design of a Tangent Non-linear Packaging System, Journal of Low Frequency Noise Vibration and Active Control, 38 (2019), 3-4, pp. 1075-1080
  24. Yao, S. W., Cheng, Z. B., The Homotopy Perturbation Method for a Non-linear Oscillator with a Damping, Journal of Low Frequency Noise Vibration and Active Control, 38 (2019), 3-4, pp. 1110-1112
  25. He, J. H., Jin, X., A Short Review on Analytical Methods for the Capillary Oscillator in a Nanoscale Deformable Tube, Mathematical Methods in the Applied Sciences, On-line first, doi.org/10. 1002/mma.6321, dx.doi.org/10.1002/mma.6321, 2020
  26. Zhang, J. J., et al., Some Analytical Methods for Singular Boundary Value Problem in a Fractal Space, Appl. Comput. Math., 18 (2019), 3, pp. 225-235
  27. Wang, K. L., Wei, C.-F., New Analytical Approach for Fractal K(p,q) Model, Fractals, On-line first, doi.org/10.1142/S0218348X21501164, 2021
  28. Wang, K. L., He's Frequency Formulation for Fractal Nonlinear Oscillator Arising in a Microgravity Space, Numerical Methods for Partial Differential Equations, 37 (2020), 2, pp. 1374-1384
  29. Wang, K. L., A New Fractal Transform Frequency Formulation for Fractal Nonlinear Oscillators, Fractals, On-line first, doi.org/10.1142/S0218348X21500626, 2020
  30. Wang, K. L., Effect of Fangzhu's Nanoscale Surface Morphology on Water Collection, Mathematical Method in the Applied Sciences, On-line first, doi.org/10.1002/mma.6569, 2020
  31. Wang, K. J., Wang, K. L., Variational Principles for Fractal Whitham-Broer-Kaup Equations in Shallow Water, Fractals, On-line first, doi.org/10.1142/S0218348X21500286, 2020
  32. Wang, K. J., A New Fractional Nonlinear Singular Heat Conduction Model for the Human Head Considering the Effect of Febrifuge, Eur. Phys. J. Plus, 871 (2020), Nov., ID 871
  33. Wang, K. J., Variational Principle and Approximate Solution for the Generalized Burgers-Huxley Equation with Fractal Derivative, Fractals, On-line first, doi.org/10.1142/S0218348X21500444, 2020
  34. Wang, K. J., Wang, G .D., Solitary and Periodic Wave Solutions of the Generalized Fourth Order Boussinesq Equation via He's Variational Methods, Mathematical Methods in the Applied Sciences, 44 (2021), 7, pp. 5617-5625
  35. Wang, K. J., Wang, G. D., Variational Principle and Approximate, Solution for the Fractal Generalized Benjamin-Bona-Mahony-Burgers Equation in Fluid Mechanics, Fractals, On-line first, doi.org/ 10.1142/S0218348X21500754, 2021
  36. Wang, K. L., A Novel Perspective for the Fractal Schrödinger Equation, Fractals, On-line first, doi.org/10.1142/S0218348X21500936, 2020
  37. Wang, K. L., Variational Principle for Nonlinear Oscillator Arising in a Fractal Nano/Microelectromechanical System, Mathematical Methods in the Applied Sciences, On-line first, doi.org/ 10.1002/mma.6726, 2020

© 2024 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence