THERMAL SCIENCE
International Scientific Journal
TWO-SCALE TRANSFORM FOR 2-D FRACTAL HEAT EQUATION IN A FRACTAL SPACE
ABSTRACT
A 2-D fractal heat conduction in a fractal space is considered by He’s fractal derivative. The two-scale transform is adopted to convert the fractal model to its differential partner. The homotopy perturbation method is used to find the approximate analytical solution.
KEYWORDS
PAPER SUBMITTED: 2019-09-18
PAPER REVISED: 2020-06-14
PAPER ACCEPTED: 2020-06-15
PUBLISHED ONLINE: 2021-03-27
THERMAL SCIENCE YEAR
2021, VOLUME
25, ISSUE
Issue 3, PAGES [2339 - 2345]
- Metzler, R., Klafter, J., The Random Walk's Guide to Anomalous Diffusion: A Fractional Dynamics Approach, Physics Reports-Review Section of Physics Letters, 339 (2000), 1, pp. 1-77
- He, J. H., The Simpler, the Better: Analytical Methods for Non-linear Oscillators and Fractional Oscillators, Journal of Low Frequency Noise Vibration and Active Control, 38 (2019), 3-4, pp. 1252-1260
- He, J. H., A Tutorial Review on Fractal Spacetime and Fractional Calculus, International Journal of Theoretical Physics, 53 (2014), 11, pp. 3698-3718
- Wang, K. L., Wang, K. J., A Modification of the Reduced Differential Transform Method for Fractional Calculus, Thermal Science, 22 (2018), 4, pp. 1871-1875
- Wang, K. L., Yao, S. W., A Fractal Variational Principle for the Telegraph Equation with Fractal Derivatives, Fractals, 28 (2020), 4, ID 20500589
- He, J. H., Fractal Calculus and Its Geometrical Explanation, Results in Physics, 10 (2018), Sept., pp. 272-276
- Wang, Y., et al., A fractal Derivative Model for Snow's Thermal Insulation Property, Thermal Science, 23 (2019), 4, pp. 2351-2354
- Liu, H. Y., et al., A Fractal Rate Model for Adsorption Kinetics at Solid/Solution Interface, Thermal Science, 23 (2019), 4, pp. 2477-2480
- Wang, Q. L., et al., Fractal Calculus and its Application to Explanation of Biomechanism of Polar Hairs (Vol. 26, 1850086, 2018), Fractals, 27 (2019), 5, ID 1992001
- Wang, Q. L., et al., Fractal Calculus and Its Application to Explanation of Biomechanism of Polar Hairs (Vol. 26, 1850086, 2018), Fractals, 26 (2018), 6, ID 1850086
- He, J. H., A Fractal Variational Theory for One-Dimensional Compressible Flow in a Microgravity Space, Fractals, 28 (2020), 2, ID 2050024
- He, J. H., A Simple Approach to One-Dimensional Convection-Diffusion Equation and Its Fractional Modification for E Reaction Arising in Rotating Disk Electrodes, Journal of Electroanalytical Chemis-try, 854 (2019), Dec., ID 113565
- Wei, C.-F., Solving Time-Space Fractional Fitzhugh-Nagumo Equation by Using He-Laplace Decomposition Method, Thermal Science, 22 (2018), 4, pp. 1723-1728
- Wei, C-F., Application of the Homotopy Perturbation Method for Solving Fractional Lane-Emden Type Equation, Thermal Science, 22 (2019), 4, pp. 2237-2244
- Shen, Y., He, J. H., Variational Principle for a Generalized KdV Equation in a Fractal Space, Fractals, 28 (2020), 4, 20500693
- Wei, C-F., Local Frational Heat and Wave Equations with Laguerre Type Derivatives, Thermal Science, 24 (2020), 4, pp. 1-6
- Wang, K. L., et al., Physical Insight of Local Fractional Calculus and Its Application to Fractional Kdv-Burgers-Kuramoto Equation, Fractals, 27 (2019), 7, ID 1950122
- Ain, Q. T., He, J. H., On Two-Scale Dimension and Its Application, Thermal Science, 23 (2019), 3B, pp. 1707-1712
- He, J. H., Ji, F. Y. Two-Scale Mathematics and Fractional Calculus for Thermodynamics, Thermal Science, 23 (2019), 4, pp. 2131-2133
- He, J. H., Ain, Q. T., New Promises and Future Challenges of Fractal Calculus: From Two-Scale Thermodynamics to Fractal Variational Principle, Thermal Science, 24 (2020), 2A, pp. 659-681
- He, J. H., Homotopy Perturbation Technique, Computer Methods in Applied Mechanics and Engineering, 178 (1999), 3-4, pp. 262-257
- Yu, D. N., et al., Homotopy Perturbation Method with an Auxiliary Parameter for Non-Linear Oscillators, Journal of Low Frequency Noise Vibration and Active Control, 38 (2019), 3-4, pp. 1540-1554
- Kuang, W. X., et al., Homotopy Perturbation Method with an Auxiliary Term for the Optimal Design of a Tangent Non-linear Packaging System, Journal of Low Frequency Noise Vibration and Active Control, 38 (2019), 3-4, pp. 1075-1080
- Yao, S. W., Cheng, Z. B., The Homotopy Perturbation Method for a Non-linear Oscillator with a Damping, Journal of Low Frequency Noise Vibration and Active Control, 38 (2019), 3-4, pp. 1110-1112
- He, J. H., Jin, X., A Short Review on Analytical Methods for the Capillary Oscillator in a Nanoscale Deformable Tube, Mathematical Methods in the Applied Sciences, On-line first, doi.org/10. 1002/mma.6321, dx.doi.org/10.1002/mma.6321, 2020
- Zhang, J. J., et al., Some Analytical Methods for Singular Boundary Value Problem in a Fractal Space, Appl. Comput. Math., 18 (2019), 3, pp. 225-235
- Wang, K. L., Wei, C.-F., New Analytical Approach for Fractal K(p,q) Model, Fractals, On-line first, doi.org/10.1142/S0218348X21501164, 2021
- Wang, K. L., He's Frequency Formulation for Fractal Nonlinear Oscillator Arising in a Microgravity Space, Numerical Methods for Partial Differential Equations, 37 (2020), 2, pp. 1374-1384
- Wang, K. L., A New Fractal Transform Frequency Formulation for Fractal Nonlinear Oscillators, Fractals, On-line first, doi.org/10.1142/S0218348X21500626, 2020
- Wang, K. L., Effect of Fangzhu's Nanoscale Surface Morphology on Water Collection, Mathematical Method in the Applied Sciences, On-line first, doi.org/10.1002/mma.6569, 2020
- Wang, K. J., Wang, K. L., Variational Principles for Fractal Whitham-Broer-Kaup Equations in Shallow Water, Fractals, On-line first, doi.org/10.1142/S0218348X21500286, 2020
- Wang, K. J., A New Fractional Nonlinear Singular Heat Conduction Model for the Human Head Considering the Effect of Febrifuge, Eur. Phys. J. Plus, 871 (2020), Nov., ID 871
- Wang, K. J., Variational Principle and Approximate Solution for the Generalized Burgers-Huxley Equation with Fractal Derivative, Fractals, On-line first, doi.org/10.1142/S0218348X21500444, 2020
- Wang, K. J., Wang, G .D., Solitary and Periodic Wave Solutions of the Generalized Fourth Order Boussinesq Equation via He's Variational Methods, Mathematical Methods in the Applied Sciences, 44 (2021), 7, pp. 5617-5625
- Wang, K. J., Wang, G. D., Variational Principle and Approximate, Solution for the Fractal Generalized Benjamin-Bona-Mahony-Burgers Equation in Fluid Mechanics, Fractals, On-line first, doi.org/ 10.1142/S0218348X21500754, 2021
- Wang, K. L., A Novel Perspective for the Fractal Schrödinger Equation, Fractals, On-line first, doi.org/10.1142/S0218348X21500936, 2020
- Wang, K. L., Variational Principle for Nonlinear Oscillator Arising in a Fractal Nano/Microelectromechanical System, Mathematical Methods in the Applied Sciences, On-line first, doi.org/ 10.1002/mma.6726, 2020