International Scientific Journal

Authors of this Paper

External Links


Kolmogorov-Petrovskii-Piskunov equation can be regarded as a generalized form of the Fitzhugh-Nagumo, Fisher and Huxley equations which have many applications in physics, chemistry and biology. In this paper, two fractional ex-tended versions of the non-linear Kolmogorov-Petrovskii-Piskunov equation are solved by analytical methods. Firstly, a new and more general fractional derivative is defined and some properties of it are given. Secondly, a solution in the form of operator representation of the non-linear Kolmogorov-Petrovskii-Piskunov equation with the defined fractional derivative is obtained. Finally, some exact solutions including kink-soliton solution and other solutions of the non-linear Kolmogorov-Petrovskii-Piskunov equation with Khalil et al.’s fractional derivative and variable coefficients are obtained. It is shown that the fractional-order affects the propagation velocity of the obtained kink-soliton solution.
PAPER REVISED: 2020-07-10
PAPER ACCEPTED: 2020-07-10
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2021, VOLUME 25, ISSUE Issue 3, PAGES [2161 - 2168]
  1. Oldham, K. B., Spanier, J., The Fractional Calculus, Academic Press, San Diego, Cal., USA, 1974
  2. Mathieu, P., Supersymmetric Extension of the Korteweg-de Vries Equation, Journal of Mathematical Physics, 29 (1988), 11, pp. 2499-2506
  3. Podlubny, I., Fractional Differential Equations, Academic Press, San Diego, Cal., USA, 1999
  4. He, J.-H., A Tutorial Review on Fractal Spacetime and Fractional Calculus, International Journal of Theoretical Physics, 53 (2014), 11, pp. 3698-3718
  5. He, J.-H., Fractal Calculus and its Geometrical Explanation, Results in Physics, 10 (2018), 1, pp. 272-276
  6. He, J.-H., A New Fractal Derivation, Thermal Science, 15, (2011), Suppl. 1, pp. S145-S147
  7. Li, X., et al., A Fractal Modification of the Surface Coverage Model for an Electrochemical Arsenic Sensor, Electrochemical Acta, 296 (2019), 1, pp. 1491-493
  8. Brockmann, D., et al., The Scaling Laws of Human Travel, Nature, 439 (2006), 26, pp. 462-465
  9. Vosika, Z. B., et al., Fractional Calculus Model of Electrical Impedance Applied to Human Skin, PLoS ONE, 8 (2013), 4, ID e59483
  10. Zhang, S., et al., Variable Separation Method for Non-Linear Time Fractional Biological Population Model, International Journal of Numerical Methods for Heat and Fluid Flow, 25 (2015), 7, pp. 1531-1541
  11. Wang, Q. L., et al., Fractal Calculus and its Application to Explanation of Biomechanism of Polar Bear Hairs, Fractals, 26 (2018), ID 1850086
  12. Wang, Y., Deng, Q. G., Fractal Derivative Model for Tsunami Travelling, Fractals, 27 (2019), 1, ID 1950017
  13. Herink, G., et al., Real-time Spectral Interferometry Probes the Internal Dynamics of Femtosecond Soliton Molecules, Science, 356 (2017), 6333, pp. 50-54
  14. Heeger, A. J., et al., Solitons in Conducting Polymers, Reviews of Modern Physics, 60, (1998), 3, pp. 781-850
  15. Denschlag, J., et al., Generating Solitons by Phase Engineering of a Bose-Einstein Condensate, Science, 287, (2000), 5450, pp. 97-101
  16. Bilas, N., Pavloff, N., Propagation of a Dark Soliton in a Disordered Bose-Einstein Condensate, Physical Review Letters, 95 (2005), 13, ID 130403
  17. Khaykovich, L., et al., Formation of a Matter-Wave Bright Soliton, Science, 296 (2002), 5571, pp. 1290-1293
  18. Liu, X. M., et al., Real-Time Observation of the Buildup of Soliton Molecules, Physical Review Letters, 121 (2018), 2, ID 023905
  19. Solli, D. R, et al., Optical rogue waves, Nature, 450 (2007), 7172, pp. 1054-1057
  20. Williams, J., Rogue Waves Caught in 3D, Nature Physics, 12 (2016), 2, pp. 529-530
  21. Wang, D. S., et al., Long-Time Asymptotics of the Focusing Kundu-Eckhaus Equation with Non-Zero Boundary Conditions, Journal of Differential Equations, 266 (2007), 9, pp. 5209-5253
  22. Fujioka, J., et al., Fractional Optical Solitons, Physics Letters A, 374 (2010), 9, pp. 1126-1134
  23. Zhang, S., Zhang, H. Q., Fractional Sub-Equation Method and its Applications to Non-Linear Fractional PDEs, Physics Letters A, 375 (2011), 7, pp. 1069-1073
  24. Yang, X. J., et al., Modelling Fractal Waves on Shallow Water Surfaces via Local Fractional Korteweg-de Vries Equation, Abstract and Applied Analysis, 2014 (2014), ID 278672
  25. Zhang, S., et al., Fractional Soliton Dynamics and Spectral Transform of Time-Fractional Non-linear Systems: An Concrete Example, Complexity, 2019 (2019), ID 7952871
  26. Zhang, S., et al., Bilinearization and Fractional Soliton Dynamics of Fractional Kadomtsev-Petviashvili Equation, Thermal Science, 23 (2019), 3, pp. 1425-1431
  27. Zhang, S., et al., Extending Operator Method to Local Fractional Evolution Equations in Fluids, Thermal Science, 23 (2019), 6, pp. 3759-3766
  28. Gardner, C. S., et al., Method for Solving the Korteweg-de Vries Equation, Physical Review Letters, 19 (1967), 19, pp. 1095-1197
  29. Hirota, R., Exact Solution of the Korteweg-de Vries Equation for Multiple Collisions of Solitons, Physics Review Letters, 27 (1971), 18, pp. 1192-1194
  30. Navichkas, Z., The Operator Method of Solving Non-Linear Differential Equations, Lithuanian Mathematical Journal, 42 (2002), 4, pp. 387-393
  31. Kolwankar, K. M., Gangal, A. D., Fractional Differentiability of Nowhere Differentiable Functions and Dimensions, Chaos, 6 (1996), 4, pp. 505-513
  32. Khalil, R., et al., A New Definition of Fractional Derivative, Journal of Computational and Applied Mathematics, 264 (2014), 1, pp. 65-70
  33. Yang, X. J., Local Fractional Functional Analysis and its Applications, Asian Academic Publisher Limited, Hong Kong, China, 2011
  34. Ma, W. X., Fuchssteiner, B., Explicit and Exact Solutions to a Kolmogorov-Petrovskii-Piskunov Equation, International Journal of Non-Linear Mechanics, 31 (1996), 3, pp. 329-338
  35. Unal, A. O., On the Kolmogorov-Petrovskii-Piskunov Equation, Communications Faculty of Science Ankara University Series A1, 62 (2013), 1, pp. 1-10
  36. Rouhparvar, H., Travelling Wave Solution of the Kolmogorov-Petrovskii-Piskunov Equation by the First Integral Method, Bulletin of the Malaysian Mathematical Sciences Society, 37 (2014), 1, pp. 181-190
  37. Kolmogorov, A. N., et al., A Study of the Diffusion Equation with Increase in the Quantity of Matter, and its Application to a Biological Problem, Moscow University Mathematics Bulletin, 1 (1937), 1, pp. 1-25
  38. Chu, M. X., et al., Kink Soliton Solutions and Bifurcation for a Non-Linear Space-Fractional Kolmogorov-Petrovskii-Piskunov Equation in Circuitry, Chemistry or Biology, Modern Physics Letters B, 33 (2019), 30, ID 1950372
  39. Qin, C. Y., et al., Lie Symmetry Analysis, Conservation Laws and Analytic Solutions of the Time Fractional Kolmogorov-Petrovskii-Piskunov Equation, Chinese Journal of Physics, 56 (2018), 4, pp. 1734-1742
  40. Hashemi, M. S., et al., Symmetry Properties and Exact Solutions of the Time Fractional Kolmogorov-Petrovskii-Piskunov Equation, Revista Mexicana de Fìsica, 65 (2019), 5, pp. 529-535
  41. Khan, S. Y., Altaf, S., An Approximate Solution of Fractional Kolmogorov-Petrovskii-Piskunov Equations, Matematika, 35 (2019), 3, pp. 377-385
  42. Veeresha, P., et al., An Efficient Numerical Technique for the Non-Linear Fractional Kolmogorov-Petrovskii-Piskunov Equation, Mathematics, 7 (2019), 3, ID 265

© 2024 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence