THERMAL SCIENCE
International Scientific Journal
VARIATIONAL PRINCIPLE FOR NON-LINEAR FRACTIONAL WAVE EQUATION IN A FRACTAL SPACE
ABSTRACT
The fractal derivative is adopted to describe the non-linear fractional wave equation in a fractal space. A variational principle is successfully established by the semi-inverse method. The two-scale method and He’s exp-function are used to solve the equation, and a good result is obtained.
KEYWORDS
PAPER SUBMITTED: 2020-03-01
PAPER REVISED: 2020-06-17
PAPER ACCEPTED: 2020-06-18
PUBLISHED ONLINE: 2021-01-31
THERMAL SCIENCE YEAR
2021, VOLUME
25, ISSUE
Issue 2, PAGES [1243 - 1247]
- He, J. H., Generalized Equilibrium Equations for Shell Derived from a Generalized Variational Principle, Applied Mathematics Letters, 64 (2017), Feb., pp. 94-100
- He, J. H., An Alternative Approach to Establishment of a Variational Principle for the Torsional Problem of Piezoelastic Beams, Applied Mathematics Letters, 52 (2016), Feb., pp. 1-3
- He, J. H., Generalized Variational Principles for Buckling Analysis of Circular Cylinders, Acta Mechanica, 231 (2020), Dec., pp. 899-906
- He, J. H., The Simpler, The Better: Analytical Methods for Non-Linear Oscillators and Fractional Oscillators, Journal of Low Frequency Noise Vibration and Active Control, 38 (2019), 3-4, pp.1252-1260
- He, J. H., Variational Principle and Periodic Solution of the Kundu-Mukherjee-Naskar Equation, Results in Physics, 17 (2020), June, 103031
- Wang, K. L., He, C. H., A Remark on Wang's Fractal Variational Principle, Fractals, 29 (2019), 8, 1950134
- He, J. H., A Fractal Variational Theory for 1-D Compressible Flow in a Microgravity Space, Fractals, 28 (2020), 2, 2050024
- Shen, Y., He, J. H., Variational Principle for a Generalized KdV-Equation in a Fractal Space, Fractals, 20 (2020), 4, 2050069
- He, J. H., A Short Review on Analytical Methods for to a Fully Fourth Order Non-Linear Integral Boundary Value Problem with Fractal Derivatives, International Journal of Numerical Methods for Heat and Fluid-Flow, 30 (2020), 11, pp. 4933-4934
- He, J. H., A Fractal Variational Theory for 1-D Compressible Flow in a Microgravity Space, Fractals, 28 (2020), 2, 2050024
- He, J. H., Fractal Calculus and Its Geometrical Explanation. Results in Physics, 10 (2018), Sept., pp. 272-276
- Li, X. J., et al., A Fractal Two-Phase Flow Model for the Fiber Motion in a Polymer Filling Process, Fractals, 28 (2020), 5, 2050093
- Wang, Y., et al., A Fractal Derivative Model for Snow's Thermal Insulation Property, Thermal Science, 23 (2019), 4, pp. 2351-2354
- Liu, H. Y., et al., A Fractal Rate Model for Adsorption Kinetics at Solid/Solution Interface, Thermal Science, 23 (2019), 4, pp. 2477-2480
- He, C. H., et al., Taylor Series Solution for Fractal Bratu-Type Equation Arising in Electrospinning Process, Fractals, 28, (2020), 1, 2050011
- Zhang, J. J., et al., Some Analytical Methods for Singular Boundary Value Problem in a Fractal Space, Appl. Comput. Math., 18 (2019), 3, pp. 225-235
- Wang, K. L., et al., Physical Insight of Local Fractional Calculus and Its Application Fractional Kdv-Burgers-Kuramoto Equation, Fractals, 27 (2019), 7, 1950122
- Wang, K. L., Wang, K. J., A Modification of the Reduced Differential Transform Method for Fractional Calculus, Thermal Science, 22 (2018), 4, pp. 1871-1875
- Wang, K. L, Yao, S. W., Numerical Method for Fractional Zakharov-Kuznetsov Equations with He's Fractional Derivative, Thermal Science, 23 (2019), 4, pp. 2163-2170
- Bekir, A., Boz, A., Exact Solutions for a Class of Non-Linear Partial Differential Equations Using Exp-Function Method, Int. J. Non-Linear Sci. Num., 8 (2007), 4, pp. 505-512
- He, J. H., Ain, Q. T., New Promises and Future Challenges of Fractal Calculus: From Two-Scale Thermodynamics to Fractal Variational Principle, Thermal Science, 24 (2020), 2A, pp. 659-681
- He, J. H., Ji, F. Y., Two-Scale Mathematics and Fractional Calculus for Thermodynamics, Thermal Science, 23 (2019), 4, pp. 2131-2133
- Ain, Q. T., He, J. H., On Two-Scale Dimension and Its Applications, Thermal Science, 23 (2019), 3B, pp. 1707-1712
- He, J. H., Thermal Science for the Real World: Reality and Challenge, Thermal Science, 24 (2020), 4, pp. 2289-2294
- He, J. H., Exp-Function Method for Fractional Differential Equations, International Journal of Non-Linear Sciences and Numerical Simulation, 14 (2013), 6, pp. 363-366
- Ji, F. Y., et al., A Fractal Boussinesq Equation for Non-Linear Transverse Vibration of a Nanofiber-Reinforced Concrete Pillar, Applied Mathematical Modelling, 82 (2020), June, pp. 437-448
- He, J. H., et al., Difference Equation vs. Differential Equation on Different Scales, International Journal of Numerical Methods for Heat and Fluid-Flow, On-line first, doi.org/101108/HFF-03-2020-0178, 2020
- Zhang, S., et al., Simplest Exp-Function Method for Exact Solutions of Mikhauilov-Novikov-Wang Equation, Thermal Science, 23 (2019), 4, pp. 2381-2388
- He, J. H., Asymptotic Methods for Solitary Solutions and Compactons, Abstr. Appl. Anal., 2012 (2012), ID916793
- He, J. H., Wu, X. H., Exp-Function Method for Non-Linear Wave Equations, Chaos Soliton. Fract., 30 (2006), 3, pp. 700-708
- Wu, X. H., He, J. H., Solitary Solutions, Periodic Solutions and Compacton-Like Solutions Using the Exp-Function Method, Comput. Math. Application, 54 (2007), 7-8, pp. 966-986
- Wang, K. L., et. al., A Fractal Variational Principle for the Telegraph Equation with Fractal Derivatives, Fractals, 28 (2020), 4, 2050058
- Wang, K. L., He's Frequency Formulation for Fractal Nonlinear Oscillator Arising in a Microgravity Space, Numerical Methods for Partial Differential Equations, On-line first, doi.org/10.1002/num. 22584, 2020
- Wang, K. L., A Novel Approach for Fractal Burgers-BBM Equation and its Variational Principle, 2020, Fractals, On-line first, doi.org/10.1142/S0218348X2150059, 2020
- Wang, K. L., Effect of Fangzhu's Nanoscale Surface Morphology on Water Collection, Mathematical Method in the Applied Sciences, On-line first, doi.org/10.1002/mma.6569, 2020
- Wang, K. J., Wang, K. L., Variational Principles for Fractal Whitham-Broer-Kaup Equations in Shallow Water, Fractals, On-line first, doi.org/10.1142/S0218348X21500286, 2020
- Wang, K. J., A New Fractional Nonlinear Singular Heat Conduction Model for the Human Head Considering the Effect of Febrifuge, Eur. Phys. J. Plus, 135 (2020), Nov., 871
- Wang, K. J., Variational Principle and Approximate Solution for the Generalized Burgers-Huxley Equation With Fractal Derivative, Fractals, On-line first, doi.org/10.1142/S0218348X21500444, 2020
- Wang, K. J, Variational Principle and Approximate Solution for the Fractal Vibration Equation in a Microgravity Space, Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, On-line first, doi.org/10.1007/s40997-020-00414-0, 2020
- Wang, K. J. , On a High-Pass Filter Described by Local Fractional Derivative, Fractals, 28 (2020), 3, 2050031