THERMAL SCIENCE
International Scientific Journal
A NEW FRACTAL VISCOELASTIC ELEMENT: PROMISE AND APPLICATIONS TO MAXWELL-RHEOLOGICAL MODEL
ABSTRACT
This paper proposes a fractal viscoelastic element via He’s fractal derivative, its properties are analyzed in details by the two-scale transform for the first time. The element is used to establish a fractal Maxwell-rheological model, which unifies the fractal creep equation and relaxation equation, and includes the classic elastic model and the classical Maxwell-rheological model as two special cases. This paper sheds a bright light on viscoelasticity, and the model can find wide applications in rock mechanics, plastic mechanics, and non-continuum mechanics.
KEYWORDS
PAPER SUBMITTED: 2020-03-01
PAPER REVISED: 2020-06-12
PAPER ACCEPTED: 2020-06-12
PUBLISHED ONLINE: 2021-01-31
THERMAL SCIENCE YEAR
2021, VOLUME
25, ISSUE
Issue 2, PAGES [1221 - 1227]
- Zhao, Y., et al., Modelling of Rheological Fracture Behavior of Rock Cracks Subjected to Hydraulic Pressure and Far Field Stresses, Theoretical and Applied Fracture Mechanics, 101 (2019), June, pp. 59-66
- Xu, Z. D., et al., Equivalent Fractional Kelvin Model and Experimental Study on Viscoelastic Damper, Journal of Vibration and Control, 21 (2015), 13, pp. 2536-2552
- Nobuyuki, S. M., Wei, Z., Fractional Calculus Approach to Dynamic problem of Viscoelastic Material, JSME, 42 (1999), 1, pp. 827-830
- Wang, K. L., Wang. K. J., A Modification of the Reduced Differential Transform Method for Fractional Calculus, Thermal Science, 22 (2018), 4, pp. 1871-1875
- He, J. H., The Simpler, The Better: Analytical Methods for Non-Linear Oscillators and Fractional Oscillators, Journal of Low Frequency Noise Vibration and Active Control, 38 (2019), 3-4, pp. 1252-1260
- Wang, K. L., et al., Physical Insight of Local Fractional Calculus and Its Application Fractional Kdv-Burgers-Kuramoto Equation, Fractals, 27 (2019), 7, 1950122
- Wang, K. L., He, C. H., A Remark on Wang's Fractal Variational Principle, Fractals, 29 (2019), 8, 1950134
- Wang, K. J., On a High-Pass Filter Described by Local Fractional Derivative, Fractals, 28 (2020), 3, 2050031
- Wang, Y., et al., A Fractal Derivative Model for Snow's Thermal Insulation Property, Thermal Science, 23 (2019), 4, pp. 2351-2354
- Liu, H. Y., et al., A Fractal Rate Model for Adsorption Kinetics at Solid/Solution Interface, Thermal Science, 23 (2019), 4, pp. 2477-2480
- Wang, K. J., Variational Principle and Approximate Solution for the Fractal Vibration Equation in a Microgravity Space, Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, On-line first, doi.org/10.1007/s40997-020-00414-0, 2020
- Wang, Q. L., et al., Fractal Calculus and Its Application Explanation of Biomechanism of Polar Hairs, 26 (2018), 1850086, Fractals, 26 (2018), 6, 1850086
- He, J. H., A Fractal Variational Theory for 1-D Compressible Flow in a Microgravity Space, Fractals, 28 (2020), 2, 2050024
- He, J. H., A Simple Approach to 1-D Convection-Diffusion Equation and Its Fractional Modification for E Reaction Arising in Rotating Disk Electrodes, Journal of Electroanalytical Chemistry, 854 (2019), Dec., 113565
- Ji, F. Y., et al., A Fractal Boussinesq Equation for Non-Linear Transverse Vibration of a Nanofiber-Rein-Forced Concrete Pillar, Applied Mathematical Modelling, 82 (2020), June, pp. 437-448
- He, J. H., A Short Review on Analytical Methods for to a Fully Fourth Order Non-Linear Integral Boundary Value Problem with Fractal Derivatives, International Journal of Numerical Methods for Heat and Fluid-Flow, 30 (2020), 11, pp. 4933-4934
- Shen, Y., He, J. H., Variational Principle for a Generalized KdV Equation in a Fractal Space, Fractals, 28 (2020), 4, 2050069
- Li, X. J., et al., A Fractal Two-Phase Flow Model for the Fiber Motion in a Polymer Filling Process, Fractals, 28 (2020), 5, 2050093
- He, J. H., Thermal Science for the Real World: Reality and Challenge, Thermal Science, 24 (2020), 4, pp. 2289-2294
- He, J. H., A Tutorial Review on Fractal Spacetime and Fractional Calculus, International Journal of Theoretical Physics, 53 (2014), 11, pp. 3698-3718
- Li, Z. B., He, J. H., Fractional Complex Transform for Fractional Differential Equations, Math. Comput. Appl, 15 (2010), 5, pp. 970-973
- He, J. H., Fractal Calculus and Its Geometrical Explanation, Results in Physics, 10 (2018), Sept., pp. 272-276
- Ain, Q. T., He, J. H., On Two-Scale Dimension and Its Application, Thermal Science, 23 (2019), 3B, pp. 1707-1712
- He, J. H., Ji, F. Y., Two-Scale Mathematics and Fractional Calculus for Thermodynamics, Thermal Science, 23 (2019), 4, pp. 2131-2133
- He, J. H., Ain, Q. T., New Promises and Future Challenges of Fractal Calculus: From Two-Scale Thermodynamics to Fractal Variational Principle, Thermal Science, 24 (2020), 2A, pp. 659-681
- Yu, D. N., et al., Homotopy Perturbation Method with an Auxiliary Parameter for Non-Linear Oscillators, Journal of Low Frequency Noise Vibration and Active Control, 38 (2019), 3-4, pp. 1540-1554
- Kuang, W. X., et al., Homotopy Perturbation Method with an Auxiliary Term for the Optimal Design of a Tangent Non-Linear Packaging System, Journal of Low Frequency Noise Vibration and Active Control, 38 (2019), 3-4, pp. 1075-1080
- Yao, S.W., Cheng, Z. B., The Homotopy Perturbation Method for a Non-Linear Oscillator with a Damping, Journal of Low Frequency Noise Vibration and Active Control, 38 (2019), 3-4, pp. 1110-1112
- He, J. H., Latifizadeh, H., A General Numerical Algorithm for Non-Linear Differential Equations by the Variational Iteration Method, International Journal of Numerical Methods for Heat and Fluid-Flow, 30 (2020), 11, pp. 4797-4810
- Anjum, N., He, J. H., Laplace Transform: Making the Variational Iteration Method Easier, Applied Mathematics Letters, 92 (2019), Jun., pp. 134-138
- He, J. H., Jin, X., A Short Review on Analytical Methods for the Capillary Oscillator in a Nanoscale Deformable Tube, Mathematical Methods in the Applied Sciences, On-line first, doi.org/10.1002/ mma.6321, 2020
- Wang, K. L., A Novel Approach for Fractal Burgers-BBM Equation and its Variational Principle, Fractals, On-line first, doi.org/10.1142/S0218348X2150059, 2020
- Wang, K. J., Variational Principle and Approximate Solution for the Generalized Burgers-Huxley Equation with Fractal Derivative, Fractals, On-line first, doi.org/10.1142/S0218348X21500444, 2020
- Wang, K. L., et. al., A Fractal Variational Principle for the Telegraph Equation with Fractal Derivatives, Fractals, 28 (2020), 4, 2050058
- Wang, K. L., Effect of Fangzhu's Nanoscale Surface Morphology on Water Collection, Mathematical Method in the Applied Sciences, On-line first, doi.org/10.1002/mma.6569, 2020
- Wang, K. J., Wang, K. L., Variational Principles for Fractal Whitham-Broer-Kaup Equations in Shallow Water, Fractals, On-line first, doi.org/10.1142/S0218348X21500286, 2020
- Wang, K. J., A New Fractional Nonlinear Singular Heat Conduction Model for the Human Head Considering the Effect of Febrifuge, Eur. Phys. J. Plus, 135 (2020), 871
- Wang, K. L., He's Frequency Formulation for Fractal Nonlinear Oscillator Arising in a Microgravity Space, Numerical Methods for Partial Differential Equations, On-line first, doi.org/10.1002/num.22584, 2020