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This paper proposes a fractal viscoelastic element via He’s fractal derivative, its 
properties are analyzed in details by the two-scale transform for the first time. The 
element is used to establish a fractal Maxwell-rheological model, which unifies 
the fractal creep equation and relaxation equation, and includes the classic elastic 
model and the classical Maxwell-rheological model as two special cases. This pa-
per sheds a bright light on viscoelasticity, and the model can find wide applications 
in rock mechanics, plastic mechanics, and non-continuum mechanics. 
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Introduction

The rheological property plays an important role in rock, and both the long-term sta-
bility and durability of rock machines are closely related to the rock’s rheological property. For 
example, the surrounding rock mass is stable at the beginning of tunnel formation, however, 
as time goes on, the deformation of rock mass develops continuously, and after some time, the 
tunnel may lose stability or collapse suddenly, and the surrounding rock has the obvious char-
acteristics of slow deformation with the increase of time. With people’s attention the long-term 
safety of geotechnical engineering, more and more attention has been paid to the rheological 
study of geotechnical engineering, however, the focus was put mainly on what kind of constitu-
tive equations was suitable for the relationship between stress, strain and time of rock materials 
[1-3]. 

As we all know that the stress-strain relationship of an ideal elastic element satisfies 
Hooke’s law, fig. 1:

( ) ( )Eσ τ ε τ= (1)
where σ(τ) is the stress, ε(τ) – the strain, and E – the modulus of elasticity of ideal elastic ele-
ment.

As shown in fig. 2, the ideal viscous element satisfies Newton’s law gives:

( ) ( )d
d
ε τ

σ τ η
τ

= (2)

where η is the viscosity coefficient. 
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             Figure 1. The model of elastic element   Figure 2. The model of viscous element

As a powerful mathematical analysis tool, the fractal derivative has been widely used 
in the description of various complex phenomena [4-22]. Now we use the He’s fractal deriva-
tive to correct the eqs. (1) and (2). The He’s fractal derivative is defined [22-25]: 
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where α is the fractal dimension. The fractal derivative is a powerful tool to establishment of 
complex models in fractal space or discontinuous media. The geometric physical interpretation 
of fractal derivatives and the process of establishing mathematical models are described in [22].

By comparing eqs. (1) and (2), we propose a common expression:

( ) ( )d
, 0 1

d

ζ

ζ

ε τ
σ τ ζ

τ
= ℑ ≤ ≤ (4)

The aforementioned equation can be used 
to describe the relationship between force and 
strain of the viscoelastic body, fig. 3, where I 
is the viscoelasticity coefficient. For example, 
the eq. (3) is used to describe the elastic element 
when ζ = 0, and the viscous element when ζ = 1. 

For 0 < ζ < 1, it can be used to describe the viscoelastic element. Now we plan to use the two-
scale transform method [23-25] to analyze the creep properties in details.

The two-scale transform method

The two-scale method [23-25], as a new transformation method, is an extension of the 
He’s fractional complex transformation [21]. The two-scale transform can be used to convert 
the fractal calculus into the traditional partner and successfully applied to solve many fractal 
problems.

Consider the following fractal equation:

D ( ) 0
D

F
T
φ φ+ = (5)

For using the two-scale transform method [23-25]:

T ζτ= (6)

By substituting eq. (6) into eq. (5), the eq. (5) is converted into the following form:

( )D 0
D

Fζ
ϕ ϕ
τ

+ = (7)

  So, the fractal equation is successfully converted into an integral order differential 
equation, which can be solved by many classical methods, such as the homotopy perturbation 
method [26-28], variational iteration method [29-33] and so on [34-38].

Figure 3. The model of viscoelastic element 
using He’s fractal derivative
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The analysis of the viscoelastic body 

In order to study the creep properties, eq. (3) can be re-written as the following form 
by letting σ(τ) = σ0:

( )
0

d
, 0 1

d ζ

ε τ
σ ζ

τ
= ℑ ≤ ≤ (8)

Taking the two-scale transform:

T ζτ= (9)

Applying the two-scale transform to eq. (8), yields: 
( )

0
d

d
T

T
ε

σ = ℑ (10)

The solution of the previous equation is given:

( ) 0T T C
σ

ε = +
ℑ

(11)

where C is a constant. Thus we get the solution 
of ε(τ) with the help of eq. (9), which reads:

( ) 0 Cζσ
ε τ τ= +

ℑ
(12)

Let σ0 = 1, I = 1, and C = 0, we plot 
the curves of ε(τ) with different orders ζ in  
fig. 4. Obviously, for ζ = 0 and 1, the ε(τ) rep-
resents the creep properties of the elastic ele-
ment and the viscous element, respectively. The 
larger the value of ζ is, the closer it is to the char-
acteristics of elastic element, correspondingly, 
the smaller the value is, the closer it is to the 
characteristics of the viscous element. In other 
words, the fractional order ζ represents whether 
the element is mainly elastic or viscous.

An application fractal  
Maxwell-rheological model 

The fractal Maxwell-rheological model 
(FMRM) is plotted in fig. 5, we have the folow-
ing relation according to the series theory:

( ) ( ) ( )1 2σ τ σ τ σ τ= = (13)

and

( ) ( ) ( )1 2ε τ ε τ ε τ= + (14)

Taking ζ-order differentiation of the aforementioned formula, we get:
( ) ( ) ( ) ( ) ( ) ( )1 2

ζ ζζε τ ε τ ε τ= + (15)

Figure 4. The curves of ε(τ) with different 
orders ζ = 0, 0.1, 0.4, 0.7, 0.9, and 1
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For the elastic element:
( ) ( )1 1Eσ τ ε τ= (16)

and for the viscoelastic element, we have:

( ) ( ) ( )
22
ζσ τ ηε τ= (17)

Equations (13)-(16) may now be combined to produce the constitutive equation of the 
FMRM:

( ) ( ) ( ) ( ) ( )1 1
E

ζ ζε τ σ τ σ τ
η

= + (18)

Recalling the two-scale transform:
T ζτ= (19)

We replace τ with T for eq. (18), converting the FMRM constitutive equation into the 
classical partner:

( ) ( ) ( )
d d1 1

d d
T T

T
T E T

ε σ
σ

η
= + (20)

We obtain the creep equation under constant load of σ(T) = σ0:

( ) 0 0T T
E

σ σ
ε

η
= + (21)

Correspondingly, the creep equation of the FMRM is given:

( ) 0 0

E
ζσ σ

ε τ τ
η

= + (22)

The creep curves of the FMRM is plot-
ted in fig. 6 for different ζ by using σ0 = 1,  η = 1, and E = 1. The curve indicates the creep 
curve of the classical Maxwell-rheological mod-
el (CMRM) when ζ = 1, which is because the 
viscoelastic element is a pure viscous element at  
ζ = 1. In addition, when ζ = 0, the curved edge 
represents the elastic element, which is precise-
ly because the element is a pure elastic element 
for ζ = 0, and the FMRM is equivalent to two 
pure elastic elements in series. In the other cas-
es for 0 < ζ < 1, the curve is between pure elas-
tic element and CMRM. The larger the value 
of ζ, the closer it is to CMRM, the smaller it is, 
the closer it is to pure elastic element, which is 
related to the characteristics of the viscoelastic 
element.

Recalling eq. (20) and letting ε(T) = constant, we get the relaxation equation:

( ) ( )
d1 1 0

d
T

T
E T

σ
σ

η
+ = (23)

Figure 6. The creep curves of the FMRM with 
different ζ
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The application of the initial condition σ = σ0 yields:

( ) 0e
ET

T ησ σ
−

= (24)

By replacing T with τ ζ:

( ) 0e
E ζτ
ησ τ σ

−
= (25)

We draw the relaxation curves of the 
FMRM as shown in the fig. 7. Obviously, the 
viscoelastic body of the FMRM becomes to the 
a pure elastic element when ζ = 0, which leads to 
the elastic element properties in fig. 6 (red line 
– 1). As for ζ = 1, the viscoelastic body chang-
es into the viscosity element, so the FMRM be-
comes the CMRM. For 0 < ζ < 1, we can come 
to a similar conclusion by recalling the creep 
properties. Generally speaking, when the strain 
ε(T) is a constant, the stress decreases with the 
increase of time for 0 < ζ ≤ 1. By carefully ana-
lyzing different curves, we find that the larger the 
fractional order ζ is, the faster the curve decays. 

Conclusion

In this paper, for the first time ever, the fractal viscoelastic element is proposed by 
using He’s fractal derivative, and analyzed by applying the two-scale transform method in 
details. Then we use the fractal viscoelastic element to model the FMRM, and study the creep 
characteristic and relaxation characteristic with different orders ζ. As expected for ζ = 0, the 
FMRM is equivalent to two pure elastic elements in series, and when ζ = 1, the FMRM becomes 
the CMRM. The obtained results in this paper are expected to open some new perspectives 
towards the characterization of the fractal rheological model. This paper sheds a bright light on 
viscoelasticity, and the model given in this paper can find wide applications in rock mechanics 
and plastic mechanics. 
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