International Scientific Journal

External Links


This framework presents heat transfer analysis for swirling flow of viscoplastic fluid bounded by a permeable rotating disk. Problem formulation is made through constitutive relations of Bingham fluid model. Viscous dissipation effects are pre-served in the mathematical model. Entropy production analysis is made which is yet to be explored for the von-Karman flow of non-Newtonian fluids. Having found the similarity equations, these have been dealt numerically for broad parameter values. The solutions are remarkably influenced by wall suction parameter and Bingham number which measures the fluid yield stress. Akin to earlier numerical results, thermal boundary-layer suppresses upon increasing wall suction velocity. Thermal penetration depth is much enhanced when fluid yield stress becomes large. Higher heat transfer rate can be accomplished by employing higher suction velocity at the disk. However, deterioration in heat transfer is anticipated as fluid yield stress enlarges. Current numerical results are in perfect line with those of an existing article in limiting sense.
PAPER REVISED: 2019-04-03
PAPER ACCEPTED: 2019-04-06
CITATION EXPORT: view in browser or download as text file
  1. T. Von Kármán, Über laminare und turbulente Reibung, Zeitschrift fur Angew. Math. Mech. ZAMM 1 (1921) 233-252.
  2. W. G. Cochran, The flow due to a rotating disk, Proceedings of the Cambridge Philosophical Society 30 (1934) 365-375.
  3. G. K. Batchelor, Note on the class of solutions of the Navier-Stokes equations representing steady non-rotationally symmetric flow, Quart. J. Appl. Math. 4 (1951) 29-41.
  4. U. T. Bödewadt, Die Drehströmungüberfestem Grund, Z. angew Math. Mech. 20 (1940) 241-252.
  5. J. A. D. Ackroyd, On the steady flow produced by a rotating disk with either surface suction or injection, Journal of Engineering Mathematics 12 (1978) 207-220.
  6. K. Millsaps and K. Pohlhausen, Heat transfer by laminar flow from a rotating disk, J. Aeronaut. Sci. 19 (1952) 120-126.
  7. P. D. Ariel, On computation of MHD flow near a rotating disk, Z. Angew. Math. Mech. 82 (2002) 235-246.
  8. A. Arikoglu and I. Ozkol, On the MHD and slip flow over a rotating disk with heat transfer, Int. J. Numer. Meth. Heat & Fluid Flow 16 (2006) 172-184.
  9. M. Turkyilmazoglu and P. Senel, Heat and mass transfer of the flow due to a rotatingrough and porous disk, Int. J. Therm. Sci. 63 (2013) 146-158.
  10. M. Turkyilmazoglu, Nanofluid flow and heat transfer due to a rotating disk. Comput. & Fluids 94 (2014) 139-146.
  11. M. M. Rashidi, S. A. M. Pour, T. Hayat and S. Obaidat, Analytic approximate solutions for steady flow over a rotating disk in porous medium with heat transfer by homotopy analysis method, Comput. & Fluids 54 (2012) 1-9.
  12. M. Mustafa, J. A. Khan, T. Hayat and A. Alsaedi, Numerical solutions for radiative heat transfer in ferrofluid flow due to a rotating disk: Tiwari and Das model, Int. J. Nonlinear Sci. Numer. Simul. 19 (2018); doi:
  13. M. Mustafa, I. Pop, K. Naganthran and R. Nazar, Entropy generation analysis for radiative heat transfer to Bödewadt slip flow subject to strong wall suction, ur. J. Mech. B/Fluids 72 (2018) 179-188.
  14. M. Turkyilmazoglu, Fluid flow and heat transfer over a rotating and vertically moving disk, Phys. Fluids 30 (2018) doi: 10.1063/1.5037460.
  15. A. Aziz, A. Alsaedi, T. Muhammad and T. Hayat, Numerical study for heat generation/absorption in flow of nanofluid by a rotating disk, Res. Phys. 8 (2018) 785 792.
  16. A. Mehmood, M. Usman and B. Weigand, Heat and mass transfer phenomena due to a rotating non-isothermal wavy disk, Int. J. Heat & Mass Transf. 129 (2019) 96-102.
  17. H. I. Andersson, E. de Korte and R. Meland, Flow of a power-law fluid over a rotating disk revisited, Fluid Dynam. Res. 28 (2001) 75-88.
  18. A. Ahmadpour and K. Sadeghy, Swirling flow of Bingham fluids above a rotating disk: An exact solution, J. Non-Newtonian Fluid Mech. 197 (2013) 41-47.
  19. A. Guha and S. Sengupta, Analysis of von Kármán's swirling flow on a rotating disc in Bingham fluids, Phys. Fluids 28 (2016) Article ID 013601, doi:
  20. P. T. Griffiths, Flow of a generalised Newtonian fluid due to a rotating disk, J. Non-Newtonian Fluid Mech. 221 (2015) 9-17.
  21. C. Ming, L. Zheng, X. Zhang, F. Liu and V. Anh, Flow and heat transfer of power-law fluid over a rotating disk with generalized diffusion, Int. Commun. Heat & Mass Transf. 79 (2016) 81-88.
  22. S. Xun, J. Zhao, L. Zheng, X. Chen and X. Zhang, Flow and heat transfer of Ostwald-de Waele fluid over a variable thickness rotating disk with index decreasing, Int. J. Heat & Mass Transf. 103 (2016) 1214-1224.
  23. M. Tabassum and M. Mustafa, A numerical treatment for partial slip flow and heat transfer of non-Newtonian Reiner-Rivlin fluid due to rotating disk, Int. J. Heat & Mass Transf. 123 (2018) 979-987.
  24. M. M. Rashidi, S. Abelman and N. Freidooni Mehr, Entropy generation in steady MHD flow due to a rotating porous disk in a nanofluid, Int. J. Heat & Mass Transf. 62 (2013) 515-525.
  25. M. Sheremet, I. Pop, H. F. Oztop and N. Abd-Hamdeh, Natural convection of nanofluid inside a wavy cavity with non-uniform heating: Entropy generation analysis, Int. J. Numer. Meth. Heat & Fluid Flow 27 (2017) 958-980.
  26. T. Hayat, S. Qayyum, M. I. Khan and A. Alsaedi, Entropy generation in magnetohydrodynamic radiative flow due to rotating disk in presence of viscous dissipation and Joule heating, Phys. Fluids 30 (2018), Article ID 017101; doi:
  27. M. Rahman and H. I. Andersson, On heat transfer in Bödewadt flow, Int. J. Heat & Mass Transf. 112 (2017) 1057-1061.

© 2024 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence