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This framework presents heat transfer analysis for swirling flow of viscoplastic 
fluid bounded by a permeable rotating disk. Problem formulation is made through 
constitutive relations of Bingham fluid model. Viscous dissipation effects are pre-
served in the mathematical model. Entropy production analysis is made which is 
yet to be explored for the von-Karman flow of non-Newtonian fluids. Having found 
the similarity equations, these have been dealt numerically for broad parameter 
values. The solutions are remarkably influenced by wall suction parameter and 
Bingham number which measures the fluid yield stress. Akin to earlier numerical 
results, thermal boundary-layer suppresses upon increasing wall suction velocity. 
Thermal penetration depth is much enhanced when fluid yield stress becomes 
large. Higher heat transfer rate can be accomplished by employing higher suction 
velocity at the disk. However, deterioration in heat transfer is anticipated as fluid 
yield stress enlarges. Current numerical results are in perfect line with those of an 
existing article in limiting sense. 

Key words: Bingham fluid, rotating disk, viscoplastic fluid, entropy generation, 
convection 

Introduction 

The steady-state laminar flow induced by a disk of large radius rotating with constant 

angular velocity about the vertical axis is a classical fluid dynamics problem that has both the-

oretical and practical significance. Von-Karman [1] showed that such problem exhibits exact 

solution of 3-D Navier-Stokes equations. Within the boundary-layer, there is insufficient radial 

pressure gradient to overcome centrifugal effect. The result is a radially outward fluid motion 

near the disk, and for the reasons of continuity, such motion is compensated by axial flow di-

rected back towards the disk. Cochran [2] found accurate solutions of von-Karman problem by 

numerical integration of governing equations. Bachelor [3] noticed that von-Karman flow is 

just a limiting case of the problem in which both disk and fluid at infinity are in a state of 

rotation about the same axis. Another limiting case where infinite plane is stationary and fluid 

high above that plane rotates with uniform angular velocity was firstly discovered by Bodewadt 

[4]. Ackroyd [5] studied mass transfer to swirling flow along a permeable rotating disk. He 
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provided an accurate series solution comprising pure exponential functions with negative ex-

ponents. Heat transfer to laminar flow by heated rotating disk with radially varying surface 

temperature was addressed by Millsaps and Pohlhausen [6]. After these initial contributions, a 

vast wealth of literature was subsequently published addressing rotating disk induced flows 

under different physical situations such as wall permeability, transverse magnetic field, non- 

-Newtonian effects and different wall conditions [7-16] and references there in.  

There has been increasing recognition of the fact that most fluids of practical and 

industrial interest do not conform to the Newtonian flow behavior and are accordingly known 

as non-Newtonian fluids. Commonly encountered food items (flavored milk, butter, jellies, 

mayonnaise, yoghurt, whipped cream, ketchup, etc.), pharmaceutical products (suspension, 

gels, multiphase mixtures, etc.), biological fluids (blood, synovial fluid, saliva, semen, etc.), 
polymeric liquids, lubricants, paints, and greases show non-Newtonian behavior. Among vari-

ous classes of non-Newtonian materials are those exhibiting viscoplastic properties due to their 

ability to deform only if the shear stress reaches a certain minimum value called yield stress. 

Waxy crude oils, paints, jellies, emulsions, pastes, and foams are common viscoplastic materi-

als. Bingham fluid model is perhaps the simplest possible representation of the viscoplastic 

behavior. Furthermore, heat transfer phenomenon is associated with fluid-flows in wide spec-

trum of engineering and geophysical applications. Heat transfer plays enormous role in many 

industrial sectors such as in energy production, in automotive industry, in chemical and food 

processing industries, in home appliances and in aerospace engineering. Despite the aforemen-

tioned applications, modest attention is paid towards the treatment of von-Karman flow prob-

lem with non-Newtonian or heat transfer effects. Andersson et al. [17] computed accurate nu-

merical results for von-Karman flow of power-law fluids for broad range of power-law index. 

They remarked that accuracy of numerical results deteriorates with increasing deviation of flow 

behavior index from unity. The von Karman flow of Bingham fluid was firstly addressed by 

Ahmadpour and Sadeghy [18]. They showed that the problem admits similarity solutions even 

in case of Bingham fluids. Their results demonstrate remarkable effects of fluid yield stress on 

the velocity components. Similar problem was re-investigated in a later paper by Guha and 

Sengupta [19] with a focus on different computational approaches. Griffiths [20] analyzed the 

flow of shear-thinning/thickening fluids along an infinite disk in rotating frame of reference 

utilizing different fluid models. Heat transfer to von Karman flow of power-law fluid was con-

sidered by Ming et al. [21] through a generalized Fourier model based on temperature depend-

ent thermal conductivity. Xun et al. [22] analyzed the flow of shear-thinning fluid along a var-

iable thickness rotating disk. Very recently, Tabassum and Mustafa [23] examined the von-

Karman flow of Reiner-Rivlin fluid subject to partial slip using shooting method.  

Prime motive of this research is to formulate and resolve heat transfer problem for 

von-Karman flow of Bingham fluid considering isothermal wall condition. Hence the flow anal-

ysis of Ahmadpour and Sadeghy [18] is extended for heat transfer effects with viscous dissipa-

tion and wall suction aspects. Finally, entropy generation analysis is made through Second law 

of thermodynamics. In the next chapter, we present similar form of governing equations using 

von-Karman transformations. The effects of fluid yield stress and wall suction on velocity, tem-

perature and entropy generation are explained graphically in section Numerical results and dis-
cussion. Finally, the important points are highlighted in the final chapter. 

Problem formulation 

Suppose a permeable disk of large radius, R, lying in the plane z = 0 rotates with 

constant angular velocity in an otherwise stationary viscoplastic fluid obeying Bingham fluid 
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model. It is obvious to perform mathematical formulation in cylindrical co-ordinate system  

(r, ϕ, z). All three velocities (u, v, w) will be non-zero and, owing to the rotational symmetry, 

these will not change by varying azimuthal co-ordinate, ϕ. The temperature at the disk is as-

sumed constant at Tw, while T∞ denotes fluid temperature high above the surface. Heat genera-

tion due to fluid friction will be factored in the analysis. Relevant equations describing fluid 

motion and heat transfer above a rotating disk can be cast into the following forms [18]: 
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Considering no-slip and permeability at the disk, one has: 

 00, , , at 0u v r w w z      (5) 

and since lateral velocities become zero outside the boundary-layer, we have: 

 0, 0, asu v z    (6) 

Now, Cauchy stress tensor for Bingham fluid is given by: 
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where 1/2(1/2 )ij ji  e e is the second invariant of the deformation rate tensor in which  

eij = (∂ui/∂xj + ∂uj/∂xi) are the components of the deformation rate tensor, τy – the fluid yield 

stress, μp – the plastic viscosity, and ( )  – the apparent viscosity. 

Through eq. (7), the components of stress tensor, τ, are obtained: 
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in which the apparent viscosity, η, has the following form: 
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By making use of von-Karman transformations: 

p
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where 𝜁  is the dimensionless distance measured along the rotation axis, the governing equations 

transform into the following locally similar equations [18]: 
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where 
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The transformed conditions are: 
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 0, 0, asF G     (15) 

In eqs. (12)-(15), 1/2
0 /( )A w w  is the wall suction parameter, r* = r/R – the non-

dimensional radius, Bn = τy/μpω – the Bingham number, and Re = R2ω/np – the Reynolds num-

ber for disk of radius R. In a recent paper by Rahman and Andersson [24], it was shown that 

upward axial flow produces unphysical temperature profiles for Bodewadt flow. Such tendency 

is likely to occur when injection is introduced in the von-Karman’s problem. Hence present 

paper focuses only on suction (A > 0).  

Heat transfer analysis 

Heat transfer takes place as a result of difference in temperature at the disk surface and 

that of the ambient fluid. In presence of viscous dissipation, the energy equation is given by: 
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where k is the thermal conductivity, cp – the specific heat capacity, and 𝛷 – the viscous dissi-

pation term given: 
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By using θ(ζ) = (T – T∞)/(Tw – T∞) together with the von-Karman transformations, 

eq. (16) becomes: 

  
1 Ec
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where Pr = μcp/k denotes the Prandtl number and Ec = R2ω2/cpΔT is the Eckert number. Equa-

tion (18) is to be solved subject to the conditions:  

 (0) 1 and ( ) 0     (19) 

Skin friction coefficient, Nusselt number,  

and volumetric flow rate 

Skin friction coefficient, Cf, measuring the drag coefficient at the surface is defined: 
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where τr and τϕ denote the radial and azimuthal wall stresses, respectively, which can be evalu-

ated from eq. (8). Equation (21) in view of transformations (10) becomes: 
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Nusselt number measuring the importance of convective heat transfer relative to con-

ductive heat transfer is defined: 
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where qw is the wall heat flux. Using the length scale L as / ,p  eq. (22) reduces to: 

 Nu (0)   (23) 

The pumping efficiency of the disk can be computed using the following definite in-

tegral [13]: 
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Entropy generation equation 

The entropy generation rate is defined in eq. (25), see Rashidi et al. [25], Sheremet 

et al. [26], Hayat et al. [27] etc.: 

 

2 2 2
'''
gen 2

1k T T T
S

r r z TT



 

        
         

         

 (25) 

First part of eq. (25) signifies the entropy production due to thermal irreversibility and 

second part corresponds to the fluid friction irreversibility. 

The dimensionless form of the entropy generation rate is the entropy generation num-

ber, NG, which is the ratio of the actual entropy generation rate genS  to the characteristic entropy 

generation rate 0 ( / ).S k T T     It is evaluated: 
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where α = ΔT/T∞ measures the wall and ambient temperature difference. To determine the con-

tribution of entropy generation due to heat transfer, we introduce Bejan number: 
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Numerical results and discussion 

Heat transfer to swirling flow of Bingham fluids along a rotating disk is modeled here. 

The normalized velocity and temperature profiles are computed from the eqs. (12)-(15), (18), 

and (19) by means of MATLAB routine bvp4c based on collocation formula. Following Ah-

medpour and Sadeghy [18], numerical integrations are carried out at r* = 1, that is, at the rim 

of the disk for certain range of embedded parameters which include Eckert number, Prandtl 

number, Bingham number, and wall suction parameter, A. Table 1 clearly shows good correla-

tion of present results with those found by Ariel [7] and Turkyilmazoglu [14] in Newtonian 

fluid case with A = 0. Table 2 displays the numerical results of wall skin friction r*Cf at different 

values of Bingham number. Since apparent viscosity in the present problem is given by the 

factor (1 + Bn/Λ) so we predict that skin friction coefficient should elevate as parameter of 

Bingham number enlarges. Physically a growth in Bingham number implies an elevation in 

fluid yield stress, τy, which in turn results in higher resisting torque at the disk surface. In tab. 

3, local Nusselt number data is presented by varying the parameters Bn, Pr, and Ec. Note that 

by increasing fluid yield stress, τy, heat transfer through the disk deteriorates significantly. As 

Prandtl number enlarges, the relative importance of momentum diffusion increases due to 

which local Nusselt number enlarges. Furthermore, it is predicted that by increasing the inten-

sity of viscous dissipation the rate of heat transfer from the solid surface should decrease. 

The behavior of Bingham number on all three velocities (u, v, w) and temperature profile, θ, is 

portrayed through figs. 1(a)-1(d) at a specific parameter value A = 1. Figure 1(a) depicts that 

radially outward flow caused by centrifugal force decelerates throughout the boundary-layer 

by increasing fluid yield stress. Maximum radial velocity is attained at a higher axial distance 

as parameter of Bingham number enlarges. Figure 1(b) displays the azimuthal velocity curves, 

represented by G(ζ), for various values of Bingham number. It is clear that circumferential 

velocity grows and boundary-layer expands where fluid yield stress is enhanced. The reduction 

in radial fluid motion upon increasing Bingham number, as clarified in fig. 1(a), must be 

compensated by a decrease in downward axial velocity, fig. 1(c). In other words, the pump ing 

efficiency of the disk, that depends on absolute value of H(∞), is much reduced in the presence 

of yield stress. Physically the amount of fluid sucked from a region of lower temperature to a 

region of higher temperature decreases with increasing Bingham number. As a consequence, 

thermal boundary-layer appears to expand upon increasing fluid yield stress, fig. 1(d). Tem- 
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Table 1. Comparison with the numerical results obtained by Turkyilmazoglu [14] and Ariel [7] and when 
Bn = A = Ec = 0, and Pr = 1 

 [14] [7] Present 

F′(0) 0.5102326 0.5102326191 0.510233 

G′(0) –0.6159220 0.6159220144 –0.615922 

H(∞) –0.8844741 0.8844741002 –0.884472 

–θ′(0) 0.3962475 – 0.396248 

Table 2. Effect of Bingham number on skin friction coefficient r*Cf when r* = 1, Re = 2950, and A = 1 

Bn  Pr  Ec  F′(0) G′(0) r*Cf 

0 5 0.2 0.38956 –1.17522 0.02279 

10 5 0.2 0.32344 –1.13896 0.02519 

20 5 0.2 0.27708 –1.11538 0.02794 

30 5 0.2 0.24208 –1.09859 0.03088 

50 5 0.2 0.19274 –1.07631 0.03708 

Table 3. Effect of Bingham number, Prandtl number, and Eckert number,  

on local Nusselt number –θ′(0), when r* = 1, Re = 2950, and A = 1 

Bn  Pr  Ec  θ′(0) 

0 5 0.2 –4.47919 

10 5 0.2 –4.31126 

20 5 0.2 –4.13891 

30 5 0.2 –3.96382 

50 5 0.2 –3.60851 

10 2 0.2 –1.77831 

10 3 0.2 –2.62405 

10 5 0.2 –4.31126 

10 7 0.2 –5.99953 

10 5 0 –5.06572 

10 5 0.2 –4.31126 

10 5 0.4 –3.55681 

10 5 0.6 –2.80235 

perature curves become thick as Bingham number becomes large signaling a reduction in wall 

temperature gradient. 

In figs. 2(a)-2(d), velocity and temperature curves as functions of dimensionless axial 

co-ordinate ζ are plotted for a variety of wall suction parameters. In existence of wall suction, 

radial velocity is substantially diminished compared with the same without any suction velocity, 

fig. 2(a). The permeable nature of the disk also gives opposition to the induced azimuthal flow 

near the disk as clear from fig. 2(b). Dissimilar to the effect of Bingham number, the volume of  
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Figure 1. Variation in normalized velocity components, F, G, H, and temperature, θ, with ζ at different 
values of Bingham number 

fluid drawn in the axial direction grows as wall suction becomes strong. It was shown by Turky-

ilmazoglu and Senel [9], via asymptotic expressions, that the axial velocity component becomes 

constant when sufficiently large suction velocity is imposed. The same tendency appears here 

since profile of H transforms into a straight line as parameter, A, increases. Consequently, ther-

mal boundary-layer suppresses with increasing A and magnitude of this decrease in θ becomes 

zero for sufficiently large values of A. In case of strong suction with negligible viscous dissipa-

tion, eq. (18) can be directly integrated to give: 

 ( ) exp( Pr )A    (29) 

Figures 3(a) and 3(b) demonstrate the behaviors of Prandtl number and Eckert number 

on temperature profile, respectively. In fig. 3(a), the thermal boundary-layer suppress by in-

creasing Prandtl number. This is because the importance of thermal diffusion compared to mo-

mentum diffusion reduces with increasing Prandtl number. Temperature profile also becomes 

steeper when higher Prandtl number is considered. This signals a growth in the magnitude of 

local Nusselt number. Eckert number measures the viscous dissipation effect which is heat ge 

neration induced in fluid-flow as a result of friction. Large Eckert number (Ec > 1) can only be 

considered in special situations where fluid under consideration is either highly viscous or it 

flows with large velocity. By increasing Eckert number, heat generation due to fluid friction 

enhances at a given temperature gradient. This in turn leads to thicker temperature profiles as 

anticipated. 
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Figure 2. Variation in normalized velocity components, F, G, H, and temperature, θ, with ζ for various 
values of wall suction parameter, A 

 

Figure 3. Variation in temperature, θ, with ζ for different values of (a) Prandtl number and  

(b) Eckert number 

Figures 4(a)-4(c) display the wall skin friction r*Cf, local Nusselt number, and dimen-

sionless volumetric flow rate –H(∞)as functions of Bingham number. Computations are made 

at several values of wall suction parameter, A. Equation (21) shows that r*Cf has a direct relation 
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with Bingham number. It is further clarified via figs. 1(a) and 1(b) that wall velocity gradients 

F′(0) and G′(0) are decreasing functions of Bingham number. Due to these reasons, a decreasing 

trend in skin friction coefficient becomes apparent when Bingham number is incremented. Alt-

hough, local Nusselt number is marginally influenced by Bingham number but it is significantly 

enhanced as wall suction gets strong. Figure 4(c) shows that far field axial flow accelerates 

upon increasing wall suction parameter, A. It should be noted that variation in H(∞) with Bing-

ham number becomes smaller as parameter A gradually increases. Eventually, the graph of 

H(∞) vs. Bingham number becomes a straight line in case of strong wall suction.  

 

Figure 4. Effect of Bingham number and suction parameter, A, on (a) skin friction coefficient, Cf,  
(b) local Nusselt number Re–1/2Nu, and (c) dimensionless volumetric flow rate –H(∞) 

Entropy generation number NG is a useful tool to predict spatial variation in entropy 

production across the boundary-layer. Figures 5(a)-5(d) plot the behaviors of different param-

eters on NG. It appears that entropy production rate is maximum at the disk and it gradually 

decreases with increasing axial distance. A cross-over in NG profiles is apparent in fig. 5(a) 

 

Figure 5. Variation in entropy generation number, NG, with ζ for various values of embedded 

parameters, when α = 0.5 
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illustrating that entropy generation decreases near the disk and increases near the edge of bound-

ary-layer when fluid’s yield stress is enhanced. Figure 5(b) elucidates that the impact of Prandtl 

number is to enhance the entropy production throughout the boundary-layer. According to fig. 

5(c), the entropy generation rate is much enhanced when viscous dissipation effect is present. 

Figure 5(d) depicts that higher the fluid yield stress, greater is the entropy production within 

the von-Karman’s boundary-layer. 

Conclusion 

An analysis is carried out for heat transfer in von-Karman flow of Bingham fluid sub-

ject to wall suction. A similarity solution is achieved that enabled us to discover the role of 

yield stress on heat transfer and entropy generation rate. On the basis of present work, following 

conclusions are drawn as follow. 

 The retarding effect of fluid suction on the radial and azimuthal velocities is apparent from 

the numerical results. 

 Axial velocity profile becomes constant as the wall suction effect enlarges. Furthermore, 

there is no variation in entrainment velocity H(∞)with Bingham number in case of strong 

wall suction. 

 Inclusion of wall suction phenomenon leads to an enhancement in the amount of cold fluid 

that is drawn towards the disk. This results in the thinning of thermal boundary-layer and 

growth in wall heat transfer rate. 

 The variation in solution profiles with increasing Bingham number reduces in magnitude 

when fluid is sucked at a higher velocity. 

 Heat penetration depth grows upon increasing fluid yield stress. This effect accompanies 

with lower heat transfer rate from solid surface. 

 Entropy generation rate decreases monotonically with increasing vertical distance and as-

ymptotes to zero value. 

 The presence of yield stress has led to a growth in entropy generation rate within the bound-

ary-layer. 
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