THERMAL SCIENCE

International Scientific Journal

Authors of this Paper

External Links

GOODNESS-OF-FIT TESTS FOR THE BETA GOMPERTZ DISTRIBUTION

ABSTRACT
This article studied the goodness-of-fit tests for the beta Gompertz distribution with four parameters based on a complete sample. The parameters were estimated by the maximum likelihood method. Critical values were found by Monte Carlo simulation for the modified Kolmogorov-Smirnov, Anderson-Darling, Cramer-von Mises, and Lilliefors test statistics. The power of these test statistics founded the optimal alternative distribution. Real data applications were used as examples for the goodness of fit tests.
KEYWORDS
PAPER SUBMITTED: 2020-05-01
PAPER REVISED: 2020-05-28
PAPER ACCEPTED: 2020-06-01
PUBLISHED ONLINE: 2020-10-25
DOI REFERENCE: https://doi.org/10.2298/TSCI20S1069A
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2020, VOLUME 24, ISSUE Supplement 1, PAGES [S69 - S81]
REFERENCES
  1. Abu-Zinadah, H. H., Goodness-of-Fit Tests for the Exponentiated Gompertz Distribution, International Journal of Innovation in Science and Mathematics, 2 (2014), Jan., pp. 327-380
  2. Rasheed, H. A., et al., Comparing Some Estimators of the Parameter of Basic Gompertz Distribution, Journal of Iraqi Al-Khwarizmi Society, 2 (2018), Mar., pp. 178-187
  3. Soliman, A. A., et al., A Simulation Based Approach to the Study of Coefficient of Variation of Gompertz Distribution under Progressive First-Failure Censoring, Indian Journal of Pure and Applied Mathematics, 42 (2011), Oct., pp. 335-356
  4. Soliman, A. A., et al., Estimation of the Parameters of Life for Gompertz Distribution Using Progressive First-Failure Censoring Data, Computational Statistics and Data Analysis, 56 (2012), 8, pp. 2471-2485
  5. El-Gohary, et al., The Generalized Gompertz Distribution, Applied Mathematical Modelling, 37 (2013), 1-2, pp. 13-24
  6. Abu-Zinadah, H. H., Aloufi, A. S., Some Characterizations of the Exponentiated Gompertz Distribution, International Mathematical Forum, 9 (2014), Jan., pp. 1427-1439
  7. Abu-Zinadah, H. H., Aloufi, A. S., On Estimations of Parameters of Generalized Gompertz Distribution, International Journal of Innovation in Science and Mathematics, 3 (2015), Jan., pp 156-162
  8. Abu-Zinadah, H. H., Aloufi, A. S., Different Method Estimations of the Three Parameters of Exponentiated Gompertz Distribution, Applied Mathematics and Information Sciences. 10 (2016), Mar., pp. 705-710
  9. Jafari, A. A., et al., The Beta Gompertz Distribution, Revista Colombiana de Estadística, 37 (2014), 1, pp. 139-156
  10. Benkhelifa, L., The Beta Generalized Gompertz Distribution, Applied Mathematical Modelling, 52 (2017), Dec., pp. 341-357
  11. Hajar, N. M., Abu-Zinadah, H. H., Some Statistical Properties of the Beta Exponentiated Gompertz Distribution, IOSR Journal of Mathematics, 14 (2018), Feb., pp. 31-40
  12. Abu-Zinadah, H. H., Hajar, N. M., Classical and Bayesian Estimation of Parameters for The Beta Exponentiated Gompertz Distribution with Real Data, Journal of Advanced Research in Dynamical and Control Syatem, 11 (2019), Jan., pp. 446-453
  13. Abu-Zinadah, H. H., Hajar, N. M., Statistical Inference for Parameters of the Beta Exponentiated Gompertz Distribution According to Type-II Censoring, Journal of Computational and Theoretical Nanoscience, 16 (2019), 7, pp. 3128-3135
  14. Bakoban, R. A., Abu-Zinadah, H. H., The Beta Generliazed Inverrted Exponential Distribution with Real Data Applications, REVSTAT - Statistical Journal, 15 (2017), 1, pp. 65-88
  15. Shawky, A. I., Bakoban, R. A., Modified Goodness-of-Fit Tests for Exponentiated Gamma Distribution with Unknown Shape Parameter, InterStat, 3 (2009), Jan., pp. 1-17
  16. Lenart, A., Missov, T. I., Goodness-of-Fit Tests for the Gompertz Distribution, Taylor and Francis Group, 45 (2016), 10, pp. 2920-2937
  17. Badr, M. M., Goodness-of-Fit Tests for the Compound Rayleigh Distribution with Application Real Data, Heliyon, 5 (2019), 8, pp. 1-6
  18. Jeffrey A., Dai, H., Handbook of Mathematical Formulas and Integrals, 4th ed., Academic Press, Cambridge, Mass., USA, 2008
  19. Abdi, H., Molin, P., Lilliefors/Van Soest's Test of Normality, Encyclopedia of Measurement and Statistics, (2007), Jan., pp. 540-544
  20. Whittaker, T. A., Furlow, C. F., The Comparison of Model Selection Criteria when Selection among Competing Hierarchical Linear Models, Journal of Modern Applied Statistical Method, 8 (2009), May, pp. 137-193
  21. Best, D. J., et al., Easily Applied Tests of Fit for the Rayleigh Distribution, Synkhaya, 72 (2010), Nov., pp. 254-263
  22. Shanker, R., et al., On Modelling of Lifetimes Data Using Exponential and Lindley Distributions, Biometrics and Biostatistics International Journal, 2 (2015), 5, pp. 140-147
  23. Cakmakyapan, S., Ozal, G., Lindley-Rayleigh Distribution with Application Lifetime Data, Journal of Reliability and Statistical Studies, 11 (2018), Jan., pp. 9-24

© 2024 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence