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This article studied the goodness-of-fit tests for the beta Gompertz distribution 
with four parameters based on a complete sample. The parameters were estimated 
by the maximum likelihood method. Critical values were found by Monte Carlo 
simulation for the modified Kolmogorov-Smirnov, Anderson-Darling, Cramer-von 
Mises, and Lilliefors test statistics. The power of these test statistics founded the 
optimal alternative distribution. Real data applications were used as examples for 
the goodness of fit tests.
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Introduction

 The goodness-of-fit test is an important step in statistical analysis for lifetime data to 
select the best distribution that sufficiently fits the data. The important idea in the test is testing 
the null hypothesis, H0, about empirical distribution function (EDF) Fn(x) when the data in H0 

comes from a cumulative distribution function (CDF) F(x). For more details about this and the 
goodness of fit tests for the exponentiated Gompertz (EGpz) distribution, see Abu-Zinadah [1]. 
The H0 is equivalent to the following.

The H0: F(x) = Fn(x), where the EDF is defined:
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where x1, x2,..., xn a random sample from the distribution of X.
The probability density function (PDF) of beta Gompertz (BGpz) distribution is 

given:
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where B(. , .) is the beta function.
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The CDF of BGpz distribution is given:
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where a, b, and λ are shape parameters and α is a scale parameter.
There are many different famous lifetime distributions that can be used to model re-

liability data, one example is the Gompertz distribution. Rasheed et al. [2] compared some 
estimators of parameters for a basic Gompertz distribution, such as maximum likelihood and 
Bayesian estimators under generalized weighted loss functions by using a gamma prior distri-
bution and Soliman et al. [3, 4] discussed estimates of model parameters under the generalized 
censored scheme. El-Gohary et al. [5] introduced a new generalized distribution that is called 
the generalized Gompertz distribution. Abu-Zinadah and Aloufi [6] introduced the exponenti-
ated Gompertz distribution and discussed some of its characterizations. Also, Abu-Zinadah and 
Aloufi [7] discussed the maximum likelihood and Bayes estimations for the three parameters 
of the generalized Gompertz distribution under three different types of loss functions based on 
type II censored samples. Moreover, Abu-Zinadah and Aloufi [8] explained different methods 
of estimation of the three parameters of the exponentiated Gompertz distribution based on a 
complete sample. Jafari et al. [9] introduced the BGpz distribution with some statistical prop-
erties and the maximum likelihood estimation of its parameters. Benkhelifa [10] proposed Beta 
generalization Gompertz distribution with five new parameters, studied some properties and 
estimated the parameters. Hajar and Abu-Zinadah [11] discussed some statistical properties 
for the Beta exponentiated Gompertz distribution. Abu-Zinadah and Hajar [12] considered a 
classical and Bayesian estimations for parameters of the Beta exponentiated Gompertz distri-
bution with real data application based on complete samples under three different types of loss 
functions. Also, Abu-Zinadah and Hajar [13] studied statistical inference for parameters of the 
Beta exponentiated Gompertz distribution according to type-II censoring by using Bayesian 
and non-Bayesian estimation method. Bakoban and Abu-Zinadah [14] considered the Beta gen-
eralizes inverted exponential distribution with real data application.

On the other hand, Shawky and Bakoban [15] participated in modifying the goodness 
of fit test for an exponentiated gamma distribution with an unknown shape parameter based on 
complete and type II censored samples and found the power of it. Later on, Lenart and Missov 
[16] introduced the goodness of fit for the Gompertz distribution with four measures and pre-
sented the critical values by an empirical distribution of the test statistics. Furthermore, Badr 
[17] studied the goodness of fit tests for the compound Rayleigh distribution with application 
real data for complete and type II censored samples.

The main aim of this paper is to discuss the goodness of fit tests for the BGpz distribution. 
The maximum likelihood estimation was used to estimate the parameters of the BGpz distribution 
under complete samples. Critical values were obtained by using the Mon Carlo simulation via differ-
ent test statistics for the BGpz distribution with four parameters based on complete samples.

Maximum likelihood estimation 

 Suppose a complete sample _x = (x1, x2,..., xn) where xi is the ith order statistics. In this 
case, the likelihood function can be written:
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The natural logarithm of likelihood function is given:
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The maximum likelihood equations can be written:
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where Ψ(.) is called the Psi function, see Jeffrey and Dai [18]. These equations do not have a 
closed form solution for α, λ, a, and b. Therefore, it can be solved using the eqs. (2)-(5) with a 
numerical technique such as the Newton-Raphson method.

In tabs. 1 and 2, show the performance estimates for the different parameters of the 
BGpz distribution that were studied using the Monte Carlo simulation. The simulation has been 
repeated 1000 times with different sample sizes n = (10, 30, 50, 100, 150) based on complete 
samples from BGpz (2, 2, 2, 2). The maximum likelihood estimates (MLE), the values of rel-
ative root mean square error (RRMSE), and absolute relative bias (ARBias) of the parameters 
presented in tabs. 1 and 2, where:
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Table1. The MLE, RRMSE, and ARBias of the parameters α and λ

MLE of λMLE of α
n ARBiasRRMSEλ^ARBiasRRMSEα^ 

0.396581.293962.793160.736181.703193.4723610

0.480091.179822.960190.238480.983302.4769530

0.413181.058492.826350.172340.780422.3446750

0.392910.991772.785810.084590.578142.16919100

0.317370.856602.634740.075190.490512.15038150
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Table 2. The MLE, RRMSE, and ARBias of the parameters a and b
MLE of bMLE of a

n
ARBiasRRMSEb^ARBiasRRMSEa^

0.022630.558011.954750.413772.138082.8275310
0.005610.472521.988780.079200.328632.1584130
0.016150.431271.967710.063050.273062.1261050
0.036150.372861.927700.032570.199782.06513100
0.044700.344321.910590.029150.167442.05830150

From tabs. 1 and 2, the following were observed in the performance of all parameter 
estimates for the BGpz distribution:
 – As the sample size increases, the estimates of the parameters are reduced to be close to real 

parameter value.
 – In general, when the sample size increases, the RRMSE and ARBias of the parameters esti-

mates decrease. This indicates that the maximum likelihood estimation supplies asymptoti-
cally normally distributed and consistent estimators for all of the parameters. 

 – The results for the RRMSE and ARBias of the parameter estimates had small values. This 
indicates that the MLE were suitable estimators for the four parameters of the BGpz distri-
bution. 

Goodness of fit tests based on the EDF statistics

Assume that a random variable x1, x2,..., xn where xi the ith is order statistics, had a 
distribution function F(x) for BGpz distribution on complete sampling with sample size n and 
unknown parameters. Four the goodness of fit test statistics considered based on the EDF:

The modified Kolmogorov-Smirnov statistic (KS):
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The modified Cramer-von Mises statistic (CvM):
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The modified Anderson-Darling statistic (AD):
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The lilliefors (LF) statistic that can be found using the following steps:
 – Compute the zi-score = (xi – mi)/si,

 
where mi is the sample mean and si – the standard devi-

ation of the sample.
 – Calculate the proportion of the score (smaller or equal) to the zi value. This is called the 

frequency associated with the zi -score and it is denoted by Gzi. 
 – Calculate the probability associated with the zi -score. If it comes from a standard normal 

distribution with a mean of 0 and a standard deviation of 1, denote this probability is Nzi.
 – The LF can be calculated by using: 
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see Abdi and Molin [19]. Note that in our case Ψ^ = (α^, λ^, a^, b^) was the MLE of parameter  
Ψ = (α, λ, a, b) of the BGpz distribution.

The critical values for test statistics

In this part, the critical values were obtained using the Monte Carlo simulation of 
goodness of fit test statistics for the BGpz distribution with unknown parameters based on a 
complete sample. The simulation repeated 1000 times using the Monte Carlo method. In tab. 3, the 
results of the critical values for KS, CvM, AD, and LF with sample sizes (n = 10, 30, 50, 100, and 150) 
and levels of significance (υ = 0.20, 0.15, 0.10, 0.05, and 0.01) are shown. Note that the random 
samples come from. 

Steps to obtain the critical values for test statistics:
 – Determine H0: F(x; Ψ) = Fn(x), where F(x; Ψ) is CDF of the BGpz distribution.
 – Generate a random sample _x = (x1, x2,..., xn) that have F(x; Ψ). 
 – Calculate the MLE of the parameters by solving system eqs. (2)-(5).
 – Obtain the order statistics from _x. 
 – Compute the test statistics from eqs. (6)-(9).
 – Repeat the previous steps (from 1-5) 1000 times.
 – Determine the critical values with different significance levels υ = (0.20, 0.15, 0.10 ,0.05 ,0.01) 

via P = P(T ≤ c/H0) = 1 – υ where T is a test statistic and c its critical value.

Table 3. Critical values of the KS, CvM, AD and LF test statistics based on complete samples
Critical values

Statisticsn
υ = 0.01υ = 0.05υ = 0.10υ = 0.15υ = 0.20
0.289430.257380.238530.227480.21627D^

10
0.155210.113020.096640.086150.07684C^

0.8916510.658210.572300.515340.46862A^

0.412780.377010.356190.339850.32905L^

0.179220.152460.140820.133380.12647D^

30
0.167400.117930.095610.082970.07467C^

0.931410.707660.575570.506900.46898A^

0.258870.225050.208820.200310.19391L ^

0.142600.122030.111460.105150.10111D^

50
0.171850.121680.100170.084790.07501C^

1.002200.717270.590850.522600.46865A^

0.205600.186580.172690.165950.15856L ^

0.101510.085350.078990.073760.07029D^

100 0.169520.115740.092450.084630.07529C^

0.993920.677110.568580.511080.46358A^

0.162950.146490.135980.130970.12718L ^

0.082350.070030.064240.060530.05746D^

150
0.157800.113080.091860.081810.07307C^

1.015330.672320.568060.498430.44770A^

0.144910.128290.121510.116190.11177L ^
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From tab. 3, the following observations were noted:
 – The critical values of KS, CvM, AD and LF test statistics decrease when the sample size 

increases. 
 – As the significant level decreases, the critical values increase for all test statistics.
 – In all cases, the critical values of AD test statistics had the highest values among the others.

Power study

The power of test statistics for KS, CvM, AD and LF was found with different sig-
nificance levels and sample sizes based on a complete sample and several common alterna-
tive distributions by using the Monte Carlo simulation. The log-normal, exponential, gamma, 
chi-square with one degree of freedom, Weibull and Frechet were considered as alterna-
tive distributions. Steps to get the power of test statistics: Determine alternative hypothesis  
H1: H1: F1(x) = Fn(x), where F1(x) is a CDF of an alternative common continuous distribution 
(selected); Repeat steps (2-6) from section IV to get the values of test statistics for KS, CvM, 
AD and LF; Calculate the power of test statistics, P, for KS, CvM, AD, and LF with signifi-
cance levels υ = (0.20, 0.15, 0.10, 0.05, 0.01) via P = P(T ≤ c/H1). 

Table 4. Power of KS, CvM, AD, and LF test statistics based on complete  
samples where the log-normal distribution is the alternative distribution

Power of the test
Statisticsn

υ = 0.01υ = 0.05υ = 0.10υ = 0.15υ = 0.20

0.2660.4220.5210.6190.672D^

10
0.3570.5100.6070.6620.712C^

0.3850.5670.6670.7140.747A^

0.0500.1250.2020.2770.337L^

0.2310.4460.5560.6160.709D^

30
0.2830.5110.6170.6800.733C^

0.3110.5740.6700.7330.777A^

0.0670.2010.3190.4180.501L^

0.2680.4150.5290.5940.654D^

50
0.3480.5190.6250.6960.735C^

0.3830.5790.6820.7520.791A^

0.1250.2430.4020.4890.539L^

0.2190.4340.5320.6060.674D^

100
0.3510.5080.6240.6810.738C^

0.3690.5570.6980.7560.794A^

0.1830.3900.5320.6030.690L^

0.2320.4800.5790.6460.699D^

150
0.3430.5360.6380.6970.733C^

0.3820.6020.6870.7370.815A^

0.2330.5280.6320.7180.775L^
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Table 5. Power of KS, CvM, AD, and LF test statistics based on complete  
samples where the exponential distribution is the alternative distribution

Power of the testStatisticsn υ = 0.01υ = 0.05υ = 0.10υ = 0.15υ = 0.20
0.2630.4220.5130.5720.616D^

10 0.3250.4970.5840.6380.685C^

0.3960.5630.6480.7000.740A^

0.0750.2120.3070.3720.447L^

0.2490.3990.5200.5790.649D^

30 0.3420.4780.5930.6640.707C^

0.3750.5580.6630.7170.771A^

0.2500.4070.5360.6610.730L^

0.2490.4220.5160.5960.642D^

50
0.3800.4910.5810.6730.726C^

0.4360.5460.6560.7360.790A^

0.3550.6130.7340.7860.853L^

0.2600.4270.5170.6000.666D^

100
0.3510.5250.6150.6950.754C^

0.4000.5770.6760.7350.792A^

0.6630.8750.9380.9600.981L^

0.1900.4160.5470.6140.680D^

150 0.3140.5120.6200.6940.735C^

0.3660.5420.6570.7450.803A^

0.8600.9680.9870.9960.996L^

Table 6. Power of KS, CvM, AD and LF test statistics based on complete  
samples where the chi-square distribution is the alternative distribution

Power of the testStatisticsn υ = 0.01υ = 0.05υ =0.10υ = 0.15υ = 0.20
0.2960.4680.5520.6460.715D^

10
0.3420.5130.6300.6790.741C^

0.3660.5750.6830.7400.789A^

0.7640.8930.6510.9690.979L^

0.2130.4500.5580.6320.680D^

30
0.3200.4980.5950.6520.704C^

0.3150.5530.6550.7300.772A^

0.9991.0001.0001.0001.000L^

0.2130.4140.5580.6350.687D^

50
0.3020.5380.6310.6900.746C^

0.3250.5790.6740.7450.797A^

1.0001.0001.0001.0001.000L^

0.1800.4070.5470.6190.692D^

100
0.3050.5190.6000.6790.743C^

0.3600.5650.6600.7380.788A^

1.0001.0001.0001.0001.000L^

0.2830.4890.5950.6740.709D^

150 0.3740.5840.6680.7270.772C^

0.4040.6370.7340.7920.836A^

1.0001.0001.0001.0001.000L^
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Table 7. Power of KS, CvM, AD, and LF test statistics based on complete 
samples where the gamma distribution is the alternative distribution

Power of the testStatisticsn υ = 0.01υ = 0.05υ = 0.10υ = 0.15υ = 0.20
0.2970.4650.5680.6340.688D^

10 0.4220.5640.6460.6990.743C^

0.4390.6020.7010.7490.810A^

0.0280.0770.1300.1920.226L^

0.2950.4230.5510.6210.676D^

30 0.3500.5390.6340.7030.753C^

0.3750.5720.6680.7470.801A^

0.0200.0620.1200.1850.262L^

0.2590.4550.5480.6130.679D^

50 0.3980.5450.6370.6920.736C^

0.4480.6130.6930.7500.786A^

0.0310.1070.1620.2070.263L^

0.2640.4040.5570.6130.669D^

100 0.3450.4890.6430.7060.757C^

0.3980.5620.7060.7860.826A^

0.0220.1140.1740.2290.300L^

0.2560.4120.5270.6120.659D^

150 0.3730.5260.6140.6910.734C^

0.4080.5690.6660.7560.791A^

0.0280.1210.1780.2530.325L^

Table 8. Power of KS, CvM, AD, and LF test statistics based on complete 
samples where the Weibull distribution is the alternative distribution

Power of the testStatisticsn υ = 0.01υ = 0.05υ = 0.10υ = 0.15υ = 0.20
0.2490.4590.5580.6390.698D^

10 0.3500.5580.6490.7070.737C^

0.3790.6060.7090.7490.791A^

0.0090.0530.0950.1410.183L^

0.2240.4210.5230.5940.654D^

30 0.3190.5090.6160.6810.729C^

0.3960.5690.6790.7280.791A^

0.0070.0320.0750.1220.171L^

0.2360.4410.5500.6200.674D^

50
0.3300.5240.6260.6920.739C^

0.3870.6030.6720.7390.801A^

0.0030.0270.0640.0960.152L^

0.2750.4820.5940.6510.721D^

100
0.3830.5690.6580.7230.780C^

0.3850.5920.7210.7880.834A^

0.0060.0330.0650.0960.127L^

0.2030.4350.5340.6230.680D^

150
0.3030.5130.6030.7000.748C^

0.3410.5780.6810.7500.787A^

0.0110.0340.0660.1100.158L^
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Table 9. Power of KS, CvM, AD and LF test statistics based on complete 
samples where the Frechet distribution is the alternative distribution

Power of the test
Statisticsn

υ = 0.01υ = 0.05υ = 0.10υ = 0.15υ = 0.20
0.2170.3980.5070.5820.650D^

10
0.2750.4630.5760.6540.722C^

0.3380.5340.6420.7310.781A^

0.1080.2450.3670.4490.497L^

0.2770.4060.5270.5920.641D^

30
0.3780.5370.5970.6540.719C^

0.4580.5930.6750.7340.781A^

0.4160.5850.6600.7290.791L^

0.2780.4360.5430.6270.677D^

50
0.3460.5110.6040.6530.706C^

0.3380.5430.6650.7320.782A^

0.5670.7320.8230.8700.897L^

0.2600.4010.5110.5810.630D^

100
0.3230.4940.5860.6550.705C^

0.3480.5350.6620.7180.773A^

0.8390.9420.9720.9790.987L^

0.2350.5620.5690.6350.700D^

150
0.3720.5350.6360.6950.760C^

0.4340.5940.7020.7730.809A^

0.9570.9880.9940.9960.998L^
 

Overall observations on tabs. 4-9:
 – From tabs. 4, 7, and 8, the power of test statistics appeared as the following: the power of  

A^ > power of C^ > power of D^ > power of L^, when the log-normal, gamma and Weibull dis-
tributions were the alternative distributions.

 – From tabs. 5 and 9, the exponential and Frechet distributions were the alternative distribu-
tions. Also, the AD test statistic was the most powerful in the whole when n ≤ 30 elsewhere 
the LF test statistic was the most powerful. Moreover, the power of CvM test statistics is 
greater than the power of KS test statistics in general.

 –  When the chi-square with one degree of freedom distribution was the alternative distribu-
tion as in tab. 6, the LF method had the greatest power of test statistics. From these observa-
tions it was found that: the power of A^ > power of C^ > power of D^ .

 – The relationship between the power of the test statistic and the significant level had a posi-
tive correlation at fixed n. 

 – The AD test statistics had the highest power in most of the cases among the different alter-
native distributions.

 – The power of test statistic increased when the sample size n increased. 
 – Among the results, chi-square with one degree of freedom distribution was the best appro-

priate alternative distribution for the BGpz distribution. Also, the gamma and Weibull distri-
butions were good alternative distributions with approximate similar behavior. Whereas, the 
log-normal, Frechet and exponential distributions were the worst alternative distributions 
for the BGpz distribution.
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Real data analysis

In this section, various real data sets were employed to reveal the importance of us-
ing the BGpz distribution as a good lifetime model through comparing it by several known 
distributions such as the exponentiated Gompertz (EGpz), Gompertz (Gpz), and exponential 
(E) distributions. We obtained the MLE of unknown parameters for distributions. The model 
selection technique such as Akaike information criterion (AIC), Bayesian information criterion 
(BIC), consistent Akaike information criterion (CAIC), and Hannan-Quinn information criteri-
on (HQIC) were carried out to verify the MLE of unknown parameters. For more details about 
the model selection technique, see Whittaker and Furlow [20]. These models are defined:
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where l(θ^ ) is the log-likelihood function evaluated at the maximum likelihood estimate in equa-
tion(θ^ ), k – the number of parameters, and n – the sample size. Also, the KS, CvM, AD, and 
LF test statistics were applied to compare between fit models for data. In general, the smallest 
values of these test statistics indicated in the best fit model for the data. All computations pre-
sented to analyze the data were carried out by MATHEMATICA 11.3.

The ten real lifetime data sets are provided in this section. The first, second and third 
data sets were presented in Abu-Zinadah and Hajar [12, 13]. Moreover, the fourth and sixth data 
sets have been taken from Badr [17], the fifth data set from Best et al. [21], the rest of the data 
sets from Shanker et al. [22] and the tenth data from Cakmakyapan and Ozal [23].

From tabs. 10 and 11, the following observations can be made:
 – The MLE of unknown parameters for distributions were good estimates based on the AIC, 

BIC, HQIC, and CAIC measures.
 – According to the KS, CvM, AD, and LF test statistics, the BGpz distribution was the best fit 

model most of the time, therefore, it can be used to analyze the lifetime of the data. 

Conclusion

 In this article, the maximum likelihood estimators of the four parameters for BGpz 
distribution were derived. Also, the critical values of Kolmogorov-Smirnov, Anderson-Darling, 
Cramer-von Mises, and Lilliefors test statistics for BGpz distribution were found at different 
significant levels and sample sizes. The power study of these test statistics for common alterna-
tive distribution such as: log-normal, exponential, gamma, chi-square with one degree of free-
dom, Weibull and Frechet, showed that the chi-square with one degree of freedom distribution 
was the best alternative for BGpz distribution. The application on nine real lifetime data sets 
presented the BGpz distribution as a good model to fit these data sets.
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Table 10. The MLE of unknown parameters and the  
value of AIC, BIC, HQIC, and CAIC for different models

CAICHQICBICAIC
MLE

ModelData
b^a^λ^α^

475.536477.559482.295474.6471.087730.722540.9061770.0116275BGpz

Data 1
475.264476.927480.478474.742–0.7334291.39930.0095522EGpz
475.484476.684479.052475.228––0.7553990.0157953Gpz
484.263484.907486.091484.179––0.0218885–E
254.776257.939263.536254.2131.648571.398313.54090.0936911BGpz

Data 2
252.259254.72258.918251.926–1.435995.847450.0918918EGpz
254.913256.612259.41254.749––3.385310.121567Gpz
256.283257.16258.559256.229––0.510402-E
285.396288.906294.823284.9141.066482.497391.776080.23718BGpz

Data 3
284.073286.782291.219283.787–2.530552.047440.223399EGpz
332.995334.85337.808332.854––4.724140.0771897Gpz
344.092345.043346.552344.045––0.389287–E
85.987786.180889.992584.38772.019822.610984.697930.109753BGpz

Data 4
83.126583.548286.40782.2034–2.909999.563430.100208EGpz
86.596887.048888.954786.1523––0.6176830.491394Gpz
93.091693.39794.3592.9488––0.597015–E
116.232116.425120.237114.6320.43970310.05834.038420.170084BGpz

Data 5
115.675116.097118.955114.752–6.593232.729370.149224EGpz
143.361143.813145.718142.916––3.015170.0718961Gpz
147.818148.818149.076147.675––0.239808–E
126.426128.19132.765125.451.96831.029074.635280.0767047BGpz

Data 6
124.024125.508128.938123.452–8.1040.08472011.0233EGpz
121.804122.895125.182121.525––5.215720l.122764Gpz
119.958120.552121.696119.867––0.754903–E
82.673485.355490.556381.98381.309975.427184.616930.231276BGpz

Data 7
36.574338.696242.596936.1675–2.796660.07154792.02973EGpz
176.542178.028180.628176.342––10.88720.0599799Gpz
179.726180.504181.504179.661––0.663647–E
128.888129.591133.614127.5090.792280.6318810.7930690.313472BGpz

Data 8
126.255127.016130.034125.455–0.6012370.4894590.327902EGpz
116.421117.075119.087116.034––5.082810.0853083Gpz
113.03113.426114.432112.905––0.532081-E

43.336841.447644.65340.67010.31560855.27938.483590.313297BGpz

Data 9
44.813243.896346.300443.3132–5.953452.281840.364137EGpz
67.351367.034268.636966.6454––5.14270.0974588Gpz
67.896467.868568.669967.6742––0.526316–E
294.821298.617304.821294.41.167163.166751.186850.320427BGpz

Data 
1D

292.653295.566300.218292.403–3.151751.237970.334333EGpz
376.772378.757381.858376.648––4.511630.0809659Gpz
391.043392.056393.607391.002––0.388676–E
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Table 11. The KS,CvM, AD and LF test statistics for different models
Test statistics

ModelnData
L^A^C^D^

0.162502.639400.417170.17894BGpz

50
Data 1 0.166313.079400.517410.19842EGpz

0.174904.210390.444980.16417Gpz
0.175703.650080.518860.19107E
0.085120.886090.155600.12265BGpz

76
Data 2 0.085750.847310.147760.12036EGpz

0.069791.804020.321720.12677Gpz
0.074982.988110.570810.16633E
0.279861.425410.183380.23712BGpz

88
Data 3 0.281181.525850.202850.23455EGpz

0.2835511.68042.381290.30027Gpz
0.2832412.13912.422370.30527E
0.130670.120210.015880.05707BGpz

30
Data 4 0.130890.109800.014400.05352EGpz

0.115810.644040.083590.11493Gpz
0.097942.514010.453930.23520E
0.138520.872970.136520.16761BGpz

35
Data 5 0.317271.024750.152080.16740EGpz

0.142605.945061.247440.39993Gpz
0.146056.205161.276530.40427E
0.162830.632800.102060.12030BGpz

46
Data 6 0.163460.642960.121540.12154EGpz

0.167200.719950.129360.12936Gpz
0.151220.470980.063870.09325E
0.180036.521741.254740.24696BGpz

63
Data 7 0.095201.274560.233970.15531EGpz

0.2082618.773203.957400.42569Gpz
0.2091818.425803.862220.41800E
0.165651.114640.177140.15856BGpz

34Data 8
0.171341.355510.248460.17595EGpz
0.158360.652850.121740.13917Gpz
0.154020.271960.040510.08896E
0.164420.425620.079190.15962BGpz

20Data 9
0.202280.780910.137360.18558EGpz
0.199434.580520.975090.44120Gpz
0.198484.603490.962960.43951E
0.094610.400420.067980.06188BGpz

100
Data 10 0.094620.401240.068200.06184EGpz

0.0987815.91953.207180.30749Gpz
0.1007516.29853.210300.30677E
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