THERMAL SCIENCE

International Scientific Journal

Authors of this Paper

External Links

AFFINE ROTATION SURFACES OF ELLIPTIC TYPE IN AFFINE 3-SPACE

ABSTRACT
In this paper, we classify affine rotation surfaces of elliptic type in affine 3-space satisfying some algebraic equations regarding the co-ordinate functions and the Laplacian operators in relation the first and the second affine fundamental forms of affine rotation surfaces of elliptic type. We also give explicit forms of these surfaces.
KEYWORDS
PAPER SUBMITTED: 2020-04-05
PAPER REVISED: 2020-07-10
PAPER ACCEPTED: 2020-07-17
PUBLISHED ONLINE: 2020-10-04
DOI REFERENCE: https://doi.org/10.2298/TSCI200405260E
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2020, VOLUME 24, ISSUE Supplement 1, PAGES [S399 - S409]
REFERENCES
  1. Alcazar, J.G., Goldman, R, Affine differential geometry and a ne rotation surfaces: algebraic surfaces invariant under non-Euclidean affine rotations, arXiv:1806.08513v1, 22 Jun 2018
  2. Lee, I. C., On generalized affine rotation surfaces, Results in Mathematics, 27(1.2) (1995), pp. 63.76
  3. Süss, W., Ein affingeometrisches Gegenstfick zu den Rotationsfiachen, Math.Ann., 98 (1928), pp. 684-696
  4. Manhart, F., Affine rotational surfaces with vanishing affine curvature, Journal of Geometry, 80(1-2) (2004), pp. 166-178.
  5. Yang, W.M., Nie, J., On affine minimal rotation surfaces and conoid in A3; J. Math. (PRC), 7 (1987), pp. 205-210.
  6. Krauter, P., Affine minimal hypersurfaces of rotation, Geometriae Dedicata, 51(3) (1994), pp. 287-303.
  7. Yang, Y., Yu, Y., Liu, H., Centroaffine geometry of equiaffine rotation surfaces in R3, J. Math.Anal. Appl. 414 (2014), pp. 46-60.
  8. Faghfouri, M., Hajibadali, A, Pourreza, E., Blaschke Structure for as pecial affine immersion, Proceedings of the NAS Armenia: Mathematics, 43 (2008), pp. 29-37.
  9. Karacan, M. K., Yüksel, N., Tunçer, Y., LCN-translation surfaces in affine 3-space, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 69 (2020), pp. 461-472.
  10. Lone, M.S., Karacan, M. K., Tunçer, Y., Es, H., Translation Surfaces in Affine 3-Space, Hacettepe Journal of Mathematics and Statistics, DOI: 10.15672/HJMS.xx
  11. Andrade, M., Calculus of Affine Structures and Applications for Isosurfaces (in portuguese), PhD dissertation, Rio de Janeiro, August 2011
  12. Andrade, M., Lewiner T, Affine-invariant Curvature Estimators for Implicit Surfaces, Computer Aided Geometric Design 29 (2012), pp. 162.173.
  13. Blaschke, W., Vorlesungenuber Differentialgeometrie, Band II: Affine Differentialgeometrie, Springer, Berlin, 1923.
  14. Huamani, E.F.C., Affi ne Minimal Surfaces with Singularities, Masters dissertation, Rio de Janeiro, September, 2017.
  15. Su, B., Affine moulding surfaces and affine surfaces of revolution, Tohoku Math. J., 5 (1928), pp. 185-210.
  16. Bekkar, M., Zoubir, H., Surfaces of revolution in the 3-dimensional Lorentz-Minkowski space satisfying Δxi = λixi, Int. J. Contemp. Math. Sciences, 24 (2008), pp. 1173-118.

© 2024 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence