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In this paper, we classify affine rotation surfaces of elliptic type in affine 3-space 
satisfying some algebraic equations regarding the co-ordinate functions and the La-
placian operators in relation the first and the second affine fundamental forms of 
affine rotation surfaces of elliptic type. We also give explicit forms of these surfaces. 
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Introduction

Affine rotation surfaces are a generalization of the well-known surfaces of revolution, 
affine rotation surfaces arise naturally within the framework of affine differential geometry, a 
field started by Blaschke in the first decades of the past century. Affine rotations are the affine 
equivalents of Euclidean rotations. Affine rotation surfaces are surfaces invariant under affine 
rotations [1].

 Affine surfaces of revolution have been studied by many geometricians. Lee [2] and 
Suss [3] studied non-degenerated surfaces in 3-D affine space with affine rotational symmetry. 
Manhart gave classified of affine rotational surfaces in affine 3-space, A3, with vanishing affine 
Gauss-Kronecker curvature [4]. Yang and Nie [5] showed that if a rotation surface is minimal, 
then it must be a plane or catenoid and if a catenoid is minimal, then it must be a right helicoid. 
Krauter [6] gave a complete list of affine minimal surfaces in A3 with Euclidean rotational 
symmetry and proved that these surfaces have maximal affine surface area within the class of 
all affine surfaces of rotation satisfying suitable boundary conditions. Yang et al. [7] studied 
the invariant properties for affine rotation surfaces in A3 under the centro affine transforma-
tion group. Furthermore, they also gave some classification results for centro affine minimal 
rotation surfaces with the constant tensor norm of the Tchebychev vector field induced by the 
centro affinemetric. Lehebel investigated affine surfaces (and hypersurfaces) which are affine 
rotation surfaces. These surfaces can be characterized by the fact that all affine normals (in the 
Blaschke sense) intersect a fixed straight line (the axis) and the section with planes containing 
the axis are shadow boundries with respect to parallel light. In case the axis is a proper line (not 
at infinity) there are three types of surfaces: elliptic, hyperbolic and parabolic. Faghfouri, et 
al. [8] determined a Blaschke structure for affine immersion of Euclidian and hyperbolic type 
for plane equi-affine curve. Alcazar and Goldman [1] analyzied several properties of algebraic 
affine rotation surfaces and by using some notions and results from affine differential geometry 
and also they showed how to find the axis of an affine rotation surface. Karacan et al. [9] gave 
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classification of LCN-translation surfaces in affine 3-space. Lone et al. [10] characterized finite 
type non-degenerate translation Surfaces in affine 3-Space.

In this study, we aim to complete the categorize of affine surfaces of revolution of el-
liptic type in A3 with respect to the position vector field and the Laplacian operators in relation 
the first and second affine fundamental forms of affine surfaces of revolution of elliptic type. We 
also give explicit forms of affine surfaces of revolution of elliptic type in A3.

Preliminaries

In this section some definitions of the main affine structures will be given. The conor-
mal and normal vectors and the Gaussian and the mean curvatures. The Berwald-Blaschke met-
ric is invariant for affine tranformations and also independent of system of co-ordinates. This 
metric is a quadric form. This quadratic form might not be positive definite (non-convex) case.  
Let Ψ : Ω → R3 be a regular surface. The Berwald-Blaschke metric is given:

2 2 2 2
1 1 1

2 2 24 4 4

L M Nh du dudv dv Edu Fdudv Gdv

LN M LN M LN M

= + + = + +

− − −
(1)

where

	 , , , , , , , ,u vvu v u u v u v uvL N M Ψ Ψ Ψ= Ψ Ψ = Ψ Ψ = Ψ Ψ         

[11-15]. From now on, we shall assume that the surface is non-degenerate, that is, LN – M2 ≠ 0. 
The points LN – M2 can be negative, zero or positive. If LN – M2 is negative we call these points 
as hyperbolic, if LN – M2 is zero we call these points as parabolic and if LN – M2 is positive we 
call these points as elliptic.

Definition 1.  Let S be a regular surface with non-degenerate points and  
Ψ : Ω ⊂ R2 → S ⊂ R3 be a parametrrization. Then, we define the affine conormal field given by 
the expression:

2 1/4
    

, ,     
u v u v

u vLN M
ν

ν ν ν
∧ Ψ ∧ Ψ

= =
 −

Ψ Ψ

 (2)

where L, N, and M are the coefficents of the first affine fundamental form [11-15].
By definition, it can be seen that n d Ψ = 0:

 	 ( )1/42, ,u vd LN Mν ν ν= ± = ± −  

where the signal ± is the point elliptical or hyperbolic. Using this notation, we have:
  u v

d
ν

Ψ ∧ Ψ
= (3)

Definition 2. We define the affine normal vector:
 

,
 

,
  u v u v

u v d
ν ν ν ν
ν ν ν

ξ
∧ ∧

= =
  

(4)

or
1/42

2 2 2

1
2

u v v u
LN M N M L M

u vLN M LN M LN M
ξ

 −    Ψ − Ψ Ψ − Ψ∂ ∂ = +      ∂ ∂ − − −    
(5)
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or

2 2 2

1 1
2

u v v uG F E F
u vEG F EG F EG F

ξ
    Ψ − Ψ Ψ − Ψ∂ ∂ = +      ∂ ∂ − − −    

(6)

where n ξ = 1, n u  ξ = 0, and n v  ξ = 0.
Observe that, the affine normal vector does not belong to the tangent plane to 

the surfaces, S. The curvatures describe the variation of the normal vector. We see that  
n ξu = 0, n  ξv = 0. That is, the derivatives ξu and ξv are orthogonal to n. In particular   ξu, ξv ∈ TpS.
Therefore, we can define the shape operator S: 

	 : p pS T S T S→

given by Sp(v) = –Dvξ. Since ξu and ξv are tangents to the surface, we have that there are func-
tions:
	 : , , 1, 2ijb i jΩ→ =R 
such that 

11 12 21 22,  u u v v u vb b b bξ ξ= +Ψ Ψ+ Ψ Ψ= (7)
where

 
11 12 21 22

  , ,  , ,  
, , , 

, , , ,v vu v u u u vb b b b
d d d d

ξ ξ ξ ξ ξ ξ ξ ξΨ Ψ              = = =
Ψ Ψ

= (8)

This shows that in the basis {Ψu, Ψv}, the Shape operator Sp(v) = –Dvξ is given by the 
matrix B = (bij), i, j = 1, 2. Notice that this matrix is not necessarily symmetric [11-15].

Definition 3. The coefficients bij form a matrix B = (bij), whose determinant and the 
half of the trace are the Gaussian and the mean curvatures, respectively. Hence, we have [11-
15]:

11 22
11 22 12 21

  1K det , H
2 2

b bB b b b b trB +
= = − = = (9)

The Laplacian operators ΔI and Δh of the first and second affine fundamental forms on 
S with regard to local co-ordinates {u, v} of S are defined:

2 2 2

1I u v u vN M M L
u vLN M LN M LN M

    Ψ − Ψ Ψ − Ψ∂ ∂ ∆ = − −      ∂ ∂ − −    
Ψ

−
(10)

	
and		

2 2 2

1 h u v u vG F F E
u vEG F EG F EG F

    Ψ − Ψ Ψ − Ψ∂ ∂ ∆ = − −      ∂ ∂ − − −   
Ψ


(11)

respectively [9, 10, 16]. 

Affine rotation surfaces of elliptic type in affine 3-space

In Euclidean geometry, rotation surfaces can be qualified by the property where every 
Euclidean normal crosses a (proper) straight line g. The affine analogues refer to (non-degen-
erated) surfaces in A3 with the property which every affine normal crosses a fixed straight line 
g, which is named the axis of the surface. The sections with planes that contain g (meridians) 
refer to shadow lines with regard to parallel light and those surfaces are named affine rotation 



Es, H.: Affine Rotation Surfaces of Elliptic Type in Affine 3-Space 
S402	 THERMAL SCIENCE: Year 2020, Vol. 24, Suppl. 1, pp. S399-S409

surfaces. They comprise a one parameter family of conics in parallel planes (parallel curves). 
Meridians and parallel curves constitute a conjugate net of curves on the surface [4].

Denoting by (u, v) ∈ R2 local co-ordinates and by Ψ : Ω ⊂ R2 → R3 a non-degener-
ate Blaschke immersion, we can give the representations, in a convenient co-ordinate system  
(x1, x2, x3) of affine rotation surfaces:

Proper affine surfaces of rotation: The axis g is a proper line (x3-axis of the co-ordi-
nate system):
–– Elliptic type: If Ψ is of elliptic type, we have the subsequent representations in local co-or-

dinates:
( ) ( ) ( ) ( ),  cos ,  sin , u v f u v f u v g u Ψ =   (12)

( ) ( ) ( ),  cos ,  sin ,  u v f u v f u v u Ψ =   (13)

( ) ( ),  cos ,  sinv, u v u v u g u Ψ =   (14)

–– Hyperbolic type: If Ψ is of hyperbolic type, we get the representations:

( ) ( ) ( ) ( ), cosh ,  sinh , u v f u v f u v g u Ψ =   (15)

( ) ( ) ( ),   , sinh ,  u v f u coshv f u v u Ψ =   (16)

( ) ( ),  cosh ,  sinh , u v u v u v g u Ψ =   (17)
In Cases 1 and 2, the parallel curves refer to ellipses and hyperbolas which are cen-

tered on g, respectively [4].
–– Parabolic type: If Ψ is of parabolic type, we have the representation:

( ) ( )21, ,  ,  
2

u v u uv uv g u Ψ = +  
(18)

At this point parallel curves (u = constant) refer to parabolas in planes that are parallel 
to g [4].

Improper affine rotation surfaces: The axis g is at infinity (in the representation given 
below affine normals are parallel to the constant planes x2):

( ) ( )21, ,  ,  
2

u v u v v g u Ψ = +  
(19)

These are translation surfaces that have plane generating curves and one of those are 
parabolas [4].

So, we consider a affine surface of revolution of elliptic type defined by a patch:

( ) ( ),  cos ,   sin ,  u v u v u v g u Ψ =   (20)

The cofficients of the first affine fundamental form of affine rotation surface of elliptic 
type in affine 3-space are given:

( ) ( ) ( )2 1/431/42 ,   ,   0,  L u g u N u g u M d LN M u g g= = = =′ − ′ ′=′ ′ ′ (21)

Hence the coefficients of the Berwald-Blaschke metric of affine rotation surface of 
elliptic type or the coefficients of the second affine fundamental form are given:
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( ) ( )
2

1/4 1/43 3

 ,   ,  0u g u gE G F
u g g u g g

=
′′ ′

′ ′′ ′ ′
= =

′
(22)

We suppose that the Berwald-Blaschke metric is non-degenerate, i. e., d ≠ 0. Geomet-
rically d > 0 means that the Euclidean Gaussian curvature does not vanish, i. e. affine rotation 
surface of elliptic type is strongly convex. The affine co-normal field of affine rotation surface 
of elliptic type is given:

( ) ( ) ( )1/4 1 /3 1 43 3/4
cos sin, , ug v ug v u

u g g u g g u g g
ν

 
 

= − − 
 

′ ′

′ ′′ ′ ′


′


′ ′′
(23)

Thus, we have the affine normal vector given:

( )

( )
( )

( )
( )

( ) ( )

4 2

3

4 2 2

14 /43 3 2

7/4

7/ 2

   cos

4

    sin 3   
,

4  4  

u g ug g g u g v

u g g

u g ug g g u g v ug g g u g

u g g u g g u g

ξ

−

  + − +  = −



   + − + + −    − 


′ ′′ ′ ′′ ′′′

′ ′′

′ ′′ ′ ′′ ′′′ ′′ ′ ′′ ′′′

′ ′′ ′ ′′


′′

(24)

where v.ξ = 1, vu .ξ = 0, vv .ξ = 0. Consequently, the coefficients bij form a matrix B =[bij]:

( )
( )

( )

2 2 3 2 4 2 2 2 2 2 2 2 2 (4)

11 3/4 2 6 3 52 3

2

12 21 22 3/43

5 2 3 2 2 7 4
16  6416

 
0, 0,

4

g g ug g u g ug g g u g g g u g g u g g gb
g g u g gg g u g g

ug g g ug
b b b

g u g g

′ ′′ ′ ′′ ′′ ′ ′− + + − − +′ ′′′ ′ ′′ ′′′ ′ ′′′ ′ ′′
′ ′′ ′ ′′′ ′

−
= +

+
=

′ ′ ′′

′′ ′ ′′ ′′′

′′ ′
=

′′

− +
= −

(25)

Proposition 1. Let S be a affine rotation surface of elliptic type with non-degenerate in 
affine 3-space. Then the Gaussian and the mean curvatures of S are given:

( )A B C= +K (26)
where

	

( )

( )
( )

{ }

5/2

(

3 2
2 4 2

2 3

2 2 2 2 4)

 
, 3 2  

64 

5 7 2  2

u ug g g ug
A B u g ug g g ug

g u g g

C g g u g u g g ug

+ − +
= = − + − +

 = − + + 

 ′′ ′ ′′ ′′′  ′′ ′ ′′ ′′ ′′′
′′ ′ ′′

′ ′′ ′′′ ′′ ′′′

and

( )3

2 2 3 2 4 2 2 2

11/4

(42 2 2 2 2 )

1

32 

2 3 6 2 7 4

u g g

g g ug g u g ug g g u g g g u g g u g g g 

′ ′′

′ ′′ ′ ′′ ′′ ′ ′′ ′′′ ′ ′′ ′′′ ′ ′′′ ′ ′

= ⋅

 ⋅ − − + − − + ′−

H

(27)

respectively.
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We suppose that the affine rotation surface of elliptic type with non-degenerate given 
by eq. (14) has zero Gaussian curvature. Then, we obtain:

( ) 0A B C+ = (28)

The differential eq. (28) cannot be solved analytically. If the eq. (28) is identically 
zero, either A = 0 or (B + C) = 0. If A = 0:

( ) 2 2
1 2 3 3

1 1 ln
2 2

g u c c u u c u u c = + + + + + 
 

(29)

where ci ∈ R. If (B + C) = 0, then we have

( ) ( ) ( ) ( )2
1 1 2 1 2 1 2, , , ln  g u c g u c u c g u c u c g u c u c= = + = + = + (30)

where ci ∈ R. In the first and second solutions of g(u) in eq. (30), we have L = 0 and N = 0, 
therefore, they give rise a contradiction with assumption that the first affine fundamental form 
must be non-degenerate. Then S is parametrized:

( ) ( )2
1 2, cos ,  sin , u v u v u v c u cΨ = + (31)

( ) ( )1 2, cos ,  sin , lnu v u v u v c u cΨ = + (32)
and

( ) 2 2
1 2 3 3

1 1, cos ,  sin , ln
2 2

u v u v u v c c u u c u u c
  Ψ = + + + + +  

  
(33)

The surfaces (31)-(33) can be drawn as in the figs. 1(a)-1(c), respectively.

(a) (b) (c)

Figure 1. Affine rotation surfaces of elliptic type

Theorem 1. Let S be an affine rotation surface of elliptic type with non-degener-
ate in affne 3-space. If S has zero Gaussian curvature or affine flat then S is parametrized as  
eqs. (31)-(33).

We assume that S is affine minimal. Hence, the mean curvature is zero if and only if:

( )42 2 3 2 4 2 2 2 2 2 2 2 22 3 6 2 7 4 0g g ug g u g ug g g u g g g u g g u g g g′′ ′ ′′ ′′ ′ ′′ ′′′ ′ ′− − + − ′′ ′′′ ′ ′′′− + − =
′ 

′′ (34)

The differential eq. (34) cannot be solved analytically, so the particular solutions of 
the eq. (34) are given:
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( )
( )
( )

( )

1

1 2
2

1 2

2 2
1 2 3 3

1 1 ln
2 2

g u c
g u c u c

g u c u c

g u c c u u c u u c

=
= +

= +

 = + + + + + 
 

(35)

where ci ∈ R. In the first and second solutions of g(u) in eq. (34), we have L = 0 and N = 0, 
therefore, they give rise a contradiction with assumption that the first affine fundamental form 
must be non-degenerate. Then S is parametrized by eq. (31) which implies that the surface S and 
the surface given by eq. (33) are elliptic paraboloids.

Theorem 2. Let S be an affine rotation surface of elliptic type with non-degenerate in 
affine 3-space. If S is affine minimal, then it is a part of the surfaces given by eqs. (31) and (34).

Corollary 1. Let S be an elliptic paraboloid, then the surface S is affine flat and min-
imal.

Affine rotation surfaces of elliptic type satisfying ΔIΨ = AΨ 	

In this section, we classify affine rotation surface of elliptic type given by eq. (14):
I∆ Ψ = ΨA (36)

where A = (aij), i, j = 1, 2, 3, and

( )1 2 3,   ,  I I I I∆ Ψ∆Ψ = ∆∆ Ψ Ψ (37)

Here:
( )1 2 3cos ,  sin ,  u v u v g u= Ψ = Ψ =Ψ (38)

where u ≠ 0. 
Suppose that the affine rotation surface of elliptic type is with non-degenerate. Lapla-

cian operator with regard to the first affine fundamental form on S with the help of eqs. (36)-(38), 
and (11) turns out:

( ) ( )

( )

2 2

2 2 2 2

2

2 2

cos    sin    
,  

2 2

3   
2

I
v ug g g u g v ug g g u g

u g g u g g

ug g g u g
u g

′



′ ′ ′′ ′′′ ′′ ′ ′′ ′′′
∆ Ψ

′ ′


′ ′ ′′

    + − + + − +  

′

= 


− + − +′′ ′ ′ ′′

′′



′
(39)

Suppose that S satisfies eq. (36). Then from eqs. (37) and (38):

( )
( )

( )
( )

( ) ( )

2

11 12 13 2 2

2

21 22 23 2 2

2

31 32 33 2 2

   
cos sin

2

   
cos sin

2

3   
cos sin

2

cosv ug g g u g
a u v a u v a g u

u g g

sinv ug g g u g
a u v a u v a g u

u g g

ug g g u g
a u v a u v a g u

u g

′′ + − + + + =

 + − + + + =

−

′

′ ′′ ′′′

′ ′′

′ ′ ′′ ′′′

′ ′′

′′ ′ ′+ − +′
+

′ ′
=

′′
+

′

(40)
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 	 Since the functions cosv and sinv are linearly independent, by eq. (40) we get  
a12 = a13 = a21 = a23 =  a31 =a32 = 0, a11 = a22 = λ, a33 = µ. Consequently the matrix A can be given:

0 0
0 0
0 0

λ
λ

µ

 
 =  
  

A (41)

and eq. (40) is re-written

( )2

2 2

   

2

ug g g u g
u

u g g
λ

 + − + =
′′ ′ ′′ ′′′

′ ′′
(42)

( ) ( )2

2 2

3   
2

ug g g u g
g u

u g
µ

′− +′′ ′ ′− + ′′

′′
=

′
(43)

From eqs. (42) and (43) we obtain:

2 2 2 2
  1   3 2 , 

2 22 2
g u g g u g u gu

ug ugu g u g
µλ

′′ ′′− ′ ′′ ′′′
′ ′′′ ′

+
=

′
+ − +

= − (44)

Combining the first and second equations of eq. (44):
22 0ug u gµ λ+ ′− + = (45)
We have summarized the solutions of ordinary 

differential equation eq. (45) in tab. 1.
In the fifth row of tab. 1, we obtain a contra-

diction. Because, there is no function g(u) satisfying 
the equation ΔIΨ = 0 at the same time. An exception; 
g(u) = c1, 

g(u) = c1u + c2, where ci ∈ R. These cases 
imply that the first affine fundamental form are de-
generate, that contradicts with assumption. The con-
ditions given by the rows 1-4 do not satisfy eqs. (42) 
and (43).

Definition 4. An affine surface in A3 is called 
to be I-harmonic if it satisfies the condition ΔIΨ = 0. 

According to the tab. 1, we have proved the 
following theorem:

Theorem 3. There is non-I-harmonic affine ro-
tation surface of elliptic type with non-degenerate 
given by eq. (14) in A3. 

Theorem 4. If S is a non-I-harmonic affine ro-
tation surface of elliptic type with non-degenerate which is given by eq. (14) in A3. Then, there 
is no affine rotation surface of elliptic type satisfying the condition ΔIΨ = AΨ.

Affine rotation surfaces of elliptic type satisfying ΔhΨ = AΨ
In this section, we classify affine rotation surface of elliptic type given by eq. (14) in 

affine 3-space satisfying the equation:
h∆ Ψ = ΨA (46)

where A = (aij), i, j = 1, 2, 3 and

Table 1. The solutions of ordinary  
differential eq. (45)

λ, µ g(u)

λ ≠ 0, µ ≠ 0 ( )
1  2
 
c

u

u
µ λ µ
λ

 
 

− 
− 

  

λ = µ ≠ 0 1 2 lnc u
u

λ
λ
+

λ = 0, µ ≠ 0
2

uµ

λ ≠ 0, µ = 0
21c

uλ
−

λ = µ = 0 –
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( )1 2 3,   ,  h h h h∆ Ψ∆Ψ = ∆∆ Ψ Ψ (47)

Here:

( )1 2 3cos ,  sin ,  u v u v g u= Ψ = Ψ =Ψ (48)

where u ≠ 0. 
Suppose that the affine rotation surface of elliptic type is with non-degenerate. By a 

straightforward computation, the Laplacian operator with respect to the second affine funda-
mental form on S with the help of eqs. (46)-(48), and (11):

( )

( )
( )

( )
( )

( )3

7/4

4 2 4 2

3 3 4

4 2

/

4

2

7

7/

cos    sin    
, , 

2 2

3   

2

h
u g v ug g g u g u g v ug g g u g

u g g u g g

u g ug g g u g

u g g

    + − + + − +    = 



− + − + 



′ ′′ ′ ′′ ′′′ ′ ′′ ′ ′′ ′′′
∆ Ψ

′ ′′ ′ ′′

 ′ ′′ ′ ′′ ′′′

′′


 

′

(49)

Suppose that S satisfies eq. (36). Then from eqs. (47) and (48), we have:

( )
( )

( )

( )
( )

( )

( )
( )

( )

4 2

11 12 13
3

4 2

21 22 23 7/43

4 2 2

31 32 33 7

/

3

7 4

cos    
cos sin

2

sin    
cos sin

2

3   
cos sin

2

u g v ug g g u g
a u v a u v a g u

u g g

u g v ug g g u g
a u v a u v a g u

u g g

u g ug g g u g
a u v a u v a g u

u g g

 + ′− + + + =

 +

+

′ ′′

− + + + =

− + −′

′ ′ ′′′

′ ′′

′ ′′ ′ ′′ ′′′

′ ′′

 ′ ′′ ′ +′ ′′′+ 

′′
=

′
/4

(50)

Since the functions cosv and sinv are linearly independent, by eq. (50) we get  
a12 = a13 = a21 = a23 = a31 = a32 = 0, a11 = a22 = λ, a33 = µ. Consequently the matrix A can be given:

0 0
0 0
0 0

λ
λ

µ

 
 =  
  

A (51)

and eq. (50) is re-written
( )

( )

3 2

7/43

   

2

u g ug g g u g

u g g
λ

 ′ ′′ ′ ′ ′+ − ′ ′′

′ ′′

+ = (52)

( )
( )

( )

4 2 2

7/43

3   

2

u g ug g g u g
g u

u g g
µ

 ′ ′′ ′ ′′− ′′′

′

+

′
= + −

′
(53)
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From eqs. (52) and (53) we obtain:

( ) ( )1/4 1/43 3

2 2 2 2 2 2 ,  
2 2 3

u g g u g gug g
u g g g ug ug g u g g g ug ug g

λ µ′ ′′ ′ ′′′
′

= =
− + + − −′ ′ ′′ ′′ ′ ′′′ ′′ ′ ′′ ′ ′+′ ′′′

(54)

When the first and second equations of eq. (54) are combined, we attain:

( ) ( )2 2 2 23 0u g g ug g ug g g g g ug ug gλ µ′ ′′ ′ ′′ ′+ − + − + +′ ′′′ ′ ′ ′ ′ ′′′ =′ (55)

The differential eq. (55) cannot be solved analytically, so the particular solutions are 
given:

( ) ( )1 1 2, g u c g u c u c= = + (56)
We have summarized the solutions of ordinary differential eq. (55) in tab. 2.

         Table 2. The solutions of ordinary differential equation (55)
No. λ, µ 	 g(u)
1 λ ≠ 0, µ ≠ 0 	 c1, c1u + c2

2 λ = µ ≠ 0 	 c1, c1u + c2

3 λ = 0, µ ≠ 0 2 2
1 2 3 3   3

1 1 ln
2 2

c c u u c c u u c + + + + + 
 

4 λ ≠ µ ≠ 0
	

2
1 2 3lnc c u u c + + − 

 

5 λ = 0, µ = 0 	 g(u)

In the fifth row of tab. 2, g(u) can be any differentiable function. But this is a contra-
diction. Because, there is no the function g(u) satisfying the equation Δh Ψ = 0 at the same time. 
An exception: g(u) = c1, g(u) = c1u + c2, where ci ∈ R. These cases imply that the first affine 
fundamental form are degenerate, that contradicts with assumption. In the first and second rows 
of the aforementioned table, we have L = 0 and N = 0. So the first affine fundamental form in 
these cases are degenerate, that is a contradict with assumption. The conditions given by the 
rows 4 and 5 do not satisfy eqs. (52) and (53).

Definition 5. An affine surface in A3 is called to be h-harmonic if it satisfies the con-
dition ΔhΨ = 0. 

Therefore, we can give the following theorem:
Theorem 5. There is no h- harmonic affine rotation surface of elliptic type with non-de-

generate given by eq. (14) in A3.
Theorem 6. If S is a non-h-harmonic affine rotation surface of elliptic type with non-de-

generate which is given by eq. (14) in A3. Then, there is no affine rotation surface of elliptic type 
satisfying the condition ΔhΨ = AΨ. 

Using the similar calculations in this paper, almost the same results are obtained for 
affine rotation surface of hyperbolic type.
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