International Scientific Journal

Authors of this Paper

External Links


Effects of thermal radiation and radial applied magnetic field on the peristaltic motion of Casson material in a channel are investigated. Heat equation contains Joule heating and viscous dissipation characteristics. The flow equations in wave frame are reduced in view of long wavelength and small Reynolds number. Stream function formulation is adopted. Closed form solutions of physical quantities have been developed. Physical interpretation through graphs is assigned. It is found that pressure gradient and fluid velocity decreases for Casson fluid parameter. Also temperature is decreasing quantity of thermal radiation parameter and Prandtl number.
PAPER REVISED: 2018-04-06
PAPER ACCEPTED: 2018-04-09
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2019, VOLUME 23, ISSUE Issue 6, PAGES [3351 - 3364]
  1. T.W. Latham, Fluid Motion in a Peristaltic Pump, MIT, Cambridge MA (1966).
  2. A.H. Shapiro, M.Y. Jaffrin and S.L. Weinberg, Peristaltic pumping with long wavelength at low Reynolds number, J. Fluid Mech., 37 (1969) 799-825.
  3. Kh.S. Mekheimer, Y. Abd Elmaboud and A.I. Abdellateef, Particulate suspension flow induced by sinusoidal peristaltic waves through eccentric cylinders: thread annular, Int. J. Biomath., 06 (2013), 1350026.
  4. D. Tripathi, A mathematical model for swallowing of food bolus through the esophagus under the influence of heat transfer, Int. J. Therm. Sci., 51 (2012) 91-101.
  5. Kh.S. Mekheimer and Y. Abd elmaboud, Simultaneous effects of variable viscosity and thermal conductivity on peristaltic flow in a vertical asymmetric channel, Can. J. Phys., 92 (2014) 1541-1555.
  6. A. Sinha, G.C. Shit and N.K. Ranjit, Peristaltic transport of MHD flow and heat transfer in an asymmetric channel: Effects of variable viscosity, velocity-slip and temperature jump, Alexandria Eng. J., 54 (2015) 691-704.
  7. M. Awais, S. Farooq, H. Yasmin, T. Hayat and A. Alsaedi, Convective heat transfer analysis for MHD peristaltic flow of Jeffrey fluid in an asymmetric channel, Int. J. Biomath., 7 (2014) 1450023.
  8. R. Ellahi, M.M. Bhatti, A Riaz and M. Sheikoleslami, The effect of magnetohydrodynamics on peristaltic flow of Jeffrey fluid in a rectangular duct through a porous medium, J. Porous Media, 17 (2014) 1-20.
  9. S. Asghar, T. Minhas and A. Ali, Existence of a Hartmann layer in the peristalsis of Sisko fluid, Chin. Phys. B, 23 (2014) 054702-054707.
  10. A.A. Khan, R. Ellahi, M.M. Gulzar and M. Sheikholeslami, Effects of heat transfer on peristaltic motion of Oldroyd fluid in the presence of inclined magnetic field, J. Magn. Magn. Mater., 372 (2014) 97-106.
  11. M. Kothandapani and S. Srinivas, Peristaltic transport of Jeffrey fluid under the effect of magnetic field in an asymmetric channel, Int. J. Non-Linear Mech. 43 (2012) 915-924.
  12. Kh.S. Mekheimer, S.R. Komy and S.I. Abdelsalam, Simultaneous effects of magnetic field and space porosity on compressible Maxwell fluid transport induced by a surface acoustic wave in a microchannel, Chin. Phys. B, 22 (2013) 124702.
  13. H. Sato, T. Kawai, T. Fujita and M. Okabe, Two dimensional peristaltic flow in curved channels, Trans. Jpn. Soc. Mech. Eng. B 66 (2000) 679-685.
  14. N. Ali, M. Sajid, T. Javed and Z. Abbas, An analysis of peristaltic flow of micropolar fluid in a curved channel, Chin. Phy. Lett. 28 (2011) 014704.
  15. N. Ali, M. Sajid and T. Hayat, Long wavelength flow analysis on curved channel, Z. Naturforsch. A 65 (2010) 191-196.
  16. S. Hina, M. Mustafa, T. Hayat and N.D. Alotaibi, On peristaltic motion of pseudoplastic fluid in a curved channel with heat/mass transfer and wall properties, Appl. Math. Comput., (2015) 378-391.
  17. S.A. Shehzad, F.M. Abbasi, T. Hayat, F. Alsaadi and G. Mousa, Peristalsis in a curved channel with slip condition and radial magnetic field, Int. J. Heat Mass Transfer, 91 (2015) 562-569.
  18. T. Hayat, M. Javed and A.A. Hendi, Peristaltic transport of viscous fluid in a curved channel with compliant walls, 54 (2011) 1615-1621.
  19. N. Ali, M. Sajid, Z. Abbas and T. Javed, Non-Newtonian fluid flow induced by peristaltic waves in a curved channel, Eur. J. Mech. B/Fluids, 29 (2010) 387-394.
  20. T. Hayat, A. Tanveer, F. Alsaadi and N.D. Alotaibi, Homogeneous-heterogeneous reactions effects in peristalsis through curved geometry, AIP Advances, 5 (2015) 067172.
  21. D. Pal and G. Mandal, Hydromagnetic convective-radiative boundary layer flow of nanofluids induced by a non-linear vertical stretching/shrinking sheet with viscous-Ohmic dissipation, Powder Technol., 279 (2015) 61-74.
  22. M. Ashraf, R. Yasmeen and M. Ahmad, Thermal radiation mixed convection boundary layer flow in tightly coildcurved pipe for large Richardson number, Thermal Science, 22 (2018) 147-156.
  23. T. Hayat, M.I. Khan, M. Waqas and A. Alsaedi, Effectiveness of magnetic nanoparticles in radiative flow of Eyring-Powell fluid, J. Mol. Liq., 231 (2017) 126-133.
  24. T. Hayat, S. Qayyum, S.A. Shehzad and A. Alsaedi, Simultaneous effects of heat generation/absorption and thermal radiation in magnetohydrodynamics (MHD) flow of Maxwell nanofluid towards a stretched surface, Results Phys., 7 (2017) 562-573.
  25. M.M. Bhatti and M.M. Rashidi, Effects of thermo-diffusion and thermal radiation on Williamson nanofluid over a porous shrinking/stretching sheet, J. Mol. Liq., 221 (2016) 567-573.
  26. T. Hayat, S. Farooq, A. Alsaedi and B. Ahmad, Hall and radial magnetic field effects on radiative peristaltic flow of Carreau-Yasuda fluid in a channel with convective heat and mass transfer, J. Mag. Mag. Mat. 412 (2016) 207-216.
  27. S. Farooq, T. Hayat, A. Alsaedi and S. Asghar, Mixed convection peristalsis of carbon nanotubes with thermal radiation and entropy generation, J. Mol. Liq. 250 (2018) 451-467.
  28. T. Hayat, S. Farooq, B. Ahmad and A. Alsaedi, Peristalsis of Eyring-Powell magneto nanomaterial considering Darcy-Forchheimer relation, Int. J. Heat Mass Transf. 115 (2017) 694-702.
  29. J. Prakash and D. Tripathi, Electroosmotic flow of Williamson ionic nanoliquids in a tapered microfluidic channel in presence of thermal radiation and peristalsis, J. Mol. Liq. 256 (2018) 352-371.
  30. J. Prakash, A. Sharma and D. Tripathi, Thermal radiation effects on electroosmosis modulated peristaltic transport of ionic nanoliquids in biomicrofluidics channel, J. Mol. Liq. 249 (2018) 843-855.
  31. N. Casson, Rheology of disperse systems, Pergamon Press, Oxford (1959).
  32. W.H. Herschel and R. Bulkley, Measurement of consistency as applied to rubber-benzene solutions, Am. Soc. Test. Proc. 26 (1926).
  33. E. Bingham, The behavior of plastic materials, Bull. US. Bur. Stand. 13 (1916) 309-353.
  34. J.F. Steffe, Rheological methods in food process engineering, Freeman Press (1996).
  35. T. Hussain, S. Hussain and T. Hayat, Impact of magnetic field in radiative flow of Casson nanofluid with heat and mass fluxes, Thermal science, (2018) 22 137-145.
  36. T. Hayat, S.A. Shehzad and A. Alsaedi, Soret and Dufour effects on magnetohydrodynamic (MHD) flow of Casson fluid, Appl. Math. Mech. 33 (2012) 1-12.
  37. A.J. Benazir, R. Sivaraj and O.D. Makinde, Unsteady magnetohydrodynamic Casson fluid flow over a vertical cone and flat plate with non-uniform heat source/sink, Int. J. Eng. Res. Africa. 21 (2016) 69-83.
  38. K.U. Rehman, A.A. Malik, M.Y. Malik, N. Sandeep and N.U. Saba, Numerical study of double stratification in Casson fluid flow in the presence of mixed convection and chemical reaction, Results Phys. 7 (2017) 2997-3006.
  39. S. Chakravarty, Sarifuddin and P.K. Mandal, Unsteady flow of a two-layer blood stream past a tapered flexible artery under stenotic conditions, Comput. Methods Appl. Math. 4 (2004) 391-409.
  40. N. Iida, Influence of plasma layer on steady blood flow in microvessels, Jpn. J. Appl. Phys. 17 (1978) 203-214.
  41. M.S. Aghighi, A. Ammar, C. Metivier and M. Gharagozlu, Rayleigh-Bénard convection of Casson fluids, Int. J. Thermal Sci. 127 (2018) 79-90.
  42. B. Mahanthesh and B.J. Gireesha, Thermal Marangoni convection in two-phase flow of dusty Casson fluid, Results Phy. 8 (2018) 537-544.
  43. M.I. Khan, M. Waqas, T. Hayat and A. Alsaedi, A comparative study of Casson fluid with homogeneous-heterogeneous reactions, J. Colloid Interface Sci. 498 (2017) 85-90.
  44. M.Y. Malik, M. Khan, T. Salahuddin and I. Khan, Variable viscosity and MHD flow in Casson fluid with Cattaneo--Christov heat flux model: Using Keller box method, Eng. Sci. Tech. Int. J. 19 (2016) 1985-1992.
  45. M. Tamoor, M. Waqas, M.I. Khan, A. Alsaedi and T. Hayat, Magnetohydrodynamic flow of Casson fluid over a stretching cylinder, Results Phy. 7 (2017) 498-502.
  46. L.M. Srivastava and V.P. Srivastava, Peristaltic transport of a power law fluid: Applications to the ductus efferentes of the reproductive tract, Rheologica Acta., 27 (1988) 428-433.
  47. H.S. Lew, Y.C. Fung and C.B. Lowenstein, Peristaltic carrying and mixing of chime, J Biomech., 4 (1971) 297-315.
  48. T. Hayat, S. Farooq, B. Ahmad and A. Alsaedi, Homogeneous-heterogeneous reactions and heat source/sink effects in MHD peristaltic flow of micropolar fluid with Newtonian heating in a curved channel, J. Mol. Liq. 223 (2016) 469-488.
  49. T. Hayat, S. Farooq, A. Alsaedi and B. Ahmad, Numerical study for Soret and Dufour effects on mixed convective peristalsis of Oldroyd 8-constants fluid, Int. J. Thermal Sci. 112 (017) 68-81.
  50. T. Hayat, A. Bibi, H. Yasmin and B. Ahmad, Simultaneous effects of Hall current and homogeneous/heterogeneous reactions on peristalsis, J. Taiwan Inst. Chem. Eng. 58 (2016) 28-38.

© 2024 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence