THERMAL SCIENCE
International Scientific Journal
NEW NON-CONVENTIONAL METHODS FOR QUANTITATIVE CONCEPTS OF ANOMALOUS RHEOLOGY
ABSTRACT
This paper addresses the general calculus operators with respect to another functions containg the power-law and exponential functions. The Boltzmann-type superposition principles for the anomalous linear viscoelasticity are considered for the first time. The new technologies are as non-conventional tools proposed to extend the quantitative concepts of anomalous rheology for solid mechanics.
KEYWORDS
PAPER SUBMITTED: 2019-11-03
PAPER REVISED: 2019-11-04
PAPER ACCEPTED: 2019-11-04
PUBLISHED ONLINE: 2019-11-17
THERMAL SCIENCE YEAR
2019, VOLUME
23, ISSUE
Issue 6, PAGES [4117 - 4127]
- Newton, I. S. Method of Fluxions, 1665
- Leibniz, G. W., Nova Methodus pro Maximis et Minimis, Itemque Tangentibus, qua nec Irrationals Quantitates Moratur. Acta Eruditorum, 1684
- Yang, X. J., New General Calculi with Respect to Another Functions Applied to Describe the Newton-like Dashpot Models in Anomalous Viscoelasticity, Thermal Science, 2019, DOI: TSCI180921260Y
- Yang, X. J., Gao, F., Ju, Y. (2020). General Fractional Derivatives with Applications in Viscoelasticity, Academic Press, New York, 2012
- Yang, X. J., Gao, F., Jing. H. W., New Mathematical Models in Anomalous Viscoelasticity from the Derivative with Respect to Another Function View Point, Thermal Science, 23(2019), 3A, pp.1555-1561
- Boltzmann, L., Zur Theorie der Elastischen Nachwirkung, Annalen der Physik, 241(1878),11, pp.430-432
- Mainardi, F., Fractional Calculus and Waves in Linear Viscoelasticity: an Introduction to Mathematical Models,World Scientific, Singapore, 2010
- Rabotnov, Y., Equilibrium of an Elastic Medium with After-Effect, Prikladnaya Matematika i Mekhanika, 12 (1948), 1, pp. 53-62 (in Russian), Reprinted: Fractional Calculus and Applied Analysis, 17 (2014), 3, pp. 684-696
- Rabani, E., Gezelter, J. D., Berne, B. J., Direct Observation of Stretched-exponential Relaxation in Low-temperature Lennard-Jones Systems Using the Cage Correlation Function, Physical Review Letters, 82(1999), 18, pp.3649
- West, G. B., Brown, J. H., Enquist, B. J., The Fourth Dimension of Life: Fractal Geometry and Allometric Scaling of Organisms, Science, 284(1999), 5420, pp.1677-1679
- Larson, R., Edwards, B., Calculus, Eleventh Edition, Cengage Learning, United States, 2016
- Kohlrausch, R., Theorie des elektrischen Rückstandes in der Leidener Flasche, Annalen der Physik, 167(1854), 2, pp.179-214
- Williams, G., Watts, D. C., Non-symmetrical Dielectric Relaxation Behaviour Arising from a Simple Empirical Decay Function, Transactions of the Faraday Society, 66(1970), June, pp.80-85
- Shlesinger, M. F., Montroll, E. W., On the Williams—Watts Function of Dielectric Relaxation, Proceedings of the National Academy of Sciences, 81(1984), 4, pp.1280-1283