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This paper addresses the general calculus operators with respect to another func-
tions containg the power-law and exponential functions. The Boltzmann-type su-
perposition principles for the anomalous linear viscoelasticity are considered for 
the first time. The new technologies are as non-conventional tools proposed to 
extend the quantitative concepts of anomalous rheology for solid mechanics. 
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Introduction

The general calculi with respect to monotone functions containing the general deriv-
ative which are derived from the Newton-Leibniz derivatives for the composite functions (that 
is to say, the chain rules for the Newton-Leibniz derivatives), and the general integrals with 
respect to another function, which are derivated from the antidifferentiation of a composite 
function and the rule for the change of variables for definite integrals, were considered to de-
scribe the anomalous linear viscoelasticity with use of the general calculi involving the positive 
scaling law function and exponential functions [1-3]. 

In 1878, Boltzmann [4] proposed the superposition principle for the linear viscoelas-
ticity. The problems for the superposition principle for the anomalous linear viscoelasticity in-
volving the functions of the power law [5], fractional exponential [6] and Kohlrausch-Williams-
Watts [7] decay laws were discussed in detail. 

Inspired by the ideas and due to the different monotone functions, which are inclusive 
of the power-law function (the positive scaling law function [8]) and exponential function, the 
aim of the report is to propose the Boltzmann type superposition principles for the anomalous 
linear viscoelasticity with the aid of the general calculi involving the positive scaling law func-
tion and exponential functions. 
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The geometric interpretations of the general calculi  
with respect to monotone functions

In this section, we give the comparison of the geometric interpretations of the Newton-
Leibniz calculus and general calculus with respect to monotone function [1-3]. 

Let , , and +  be the sets of the natural numbers, real numbers and positive real 
numbers, respectively. 

The Newton-Leibniz calculus

Let us recall the Newton’s and Leibniz’s results as follows. 
The Newton-Leibniz derivative with respect to the variable t  is defined [1, 2]:

	 ( )(1)

0

d ( ) ( ) ( )D = lim
d t

t t t tt
t t

φ φ φφ
∆ →

+ ∆ −
=

∆
	 (1)

The Leibniz integral with respect to the variable t  is defined [2]:

	 (1)

1
( ) ( )d lim ( )

t n

a t kn ka

b aI t t t t
n

ψ ψ ψ
→∞ =

− = =  
 

∑∫ 	 (2)

where a∈  and + ( )/kt a k b a n= − .

General calculus with respect to monotone function 

The general derivative with respect to another function is defined [1]:

	 ( )
, ( ) (1) (1)0

d [ ( )] 1 ( ) ( ) 1 d ( )D ( ) lim
d ( ) d( ) ( )

t
t g t

g t t t t tt r
g t t tg t g t

φ ϕ ϕ ϕϕ⋅ ∆ →

+ ∆ −
= = =

∆
	 (3)

where ( ) [ ( )]t g tϕ φ=  and (1) ( ) 0g t > . 
The theorems for general derivative with respect to another function are given as 

follows. 
Theorem 1. (The sum and difference rules for general derivative with respect to an-

other function). 
If (1)

1, ( )D ( )t g tϕ⋅  and (1)
2, ( )D ( )t g tϕ⋅  exist and (1) ( ) 0g t > , then we have:

	 (1) (1) (1)
1 2 1 2, ( ) , ( ) , ( )D [ ( ) ( )] D ( ) D ( )t g t g t gt t t tϕ ϕ ϕ ϕ⋅ ⋅ ⋅± = ± 	 (4)

Theorem 2. (The constant multiple rule for general derivative with respect to another 
function). 

If (1)
, ( )D ( )t g tϕ⋅  exists, (1) ( ) 0g t >  and l  is a constant, then we have:

	 (1) (1)
, ( ) , ( )D [ ( )] D ( )t g t gl t l tϕ ϕ⋅ ⋅= 	 (5)

Theorem 3. (The product rule for general derivative with respect to another function).
If (1)

1, ( )D ( )t g tϕ⋅  and (1)
2, ( )D ( )t g tϕ⋅  exist and (1) ( ) 0g t > , then we have:

	 (1) (1) (1)
1 2 2 1 1 2, ( ) , ( ) , ( )D [ ( ) ( )] ( )D ( ) ( )D ( )t g t g t gt t t t t tϕ ϕ ϕ ϕ ϕ ϕ⋅ ⋅ ⋅⋅ = + 	 (6)

Theorem 4. (The quotient rule for general derivative with respect to another function).
If (1)

1, ( )D ( )t g tϕ⋅  and (1)
2, ( )D ( )t g tϕ⋅  exist, (1) ( ) 0g t >  and 2 ( ) 0tϕ ≠ , then we have:
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(1) (1)

2 1 1 2, ( ) , ( )(1) 1
, ( )

2 2 2

( )D ( ) ( )D ( )( )D
( ) ( ) ( )

t g t g
t g

t t t tt
t t t

ϕ ϕ ϕ ϕϕ
ϕ ϕ ϕ

⋅ ⋅
⋅

− 
= 

 
	 (7)

Theorem 5. (The chain rule for general derivative with respect to another function).
If (1)d ( )/d ( )w w wϕ ϕ=  and (1)

, ( )D ( )t g w t⋅  exist and (1) ( ) 0g t > , then we have:

	 (1) (1) (1)
, ( ) , ( )D { [ ( )]} ( )D ( )t g t gw t w w tϕ ϕ⋅ ⋅= 	 (8)

For more details of the analogous proofs, we refer to the results [11]. 
The general definite integral with respect to another function is defined [1]:

	 (1) (1)
, ( )

1

( ) ( )( ) lim [ ( )] [ ( )]d ( ) ( ) ( )d
t tn

a kt g n k a a

g b g aI t g t g t g t t g t t
n

ψ ψ⋅ →∞ =

− = Ω = Ω =  
∑ ∫ ∫ 	 (9)

where a∈ , ( ) [ ( )]t g tψ = Ω  and ( ) ( )+ [ ( ) ( )]/kg t g a k g b g a n= − . 
The theorems for general integral with respect to another function are given as follows. 
Theorem 6. (The sum and difference rules for general definite integral with respect to 

another function).
If (1)

1, ( ) ( )a t gI tϕ⋅  and (1)
2, ( ) ( )a t gI tϕ⋅  exist and (1) ( ) 0g t > , then we have:

	 (1) (1) (1)
1 2 1 2, ( ) , ( ) , ( )[ ( ) ( )] ( ) ( )a a at g t g t gI t t I t I tϕ ϕ ϕ ϕ⋅ ⋅ ⋅± = ± 	 (10)

Theorem 7. (The constant multiple rule for general definite integral with respect to 
another function).

If (1)
, ( ) ( )a t gI tϕ⋅  exists, (1) ( ) 0g t >  and l  is a constant, then we have:

	 (1) (1)
, ( ) , ( )[ ( )] ( )a at g t gI l t l I tϕ ϕ⋅ ⋅= 	 (11)

Theorem 8. If (1) ( )SL
a tI tϕ  exists and (1) ( ) 0g t > , then we have:

	 (1) (1)
, ( ) , ( )( ) ( )a tt g a gI t I tϕ ϕ⋅ ⋅= − 	 (12)

Theorem 9. (The first fundamental theorem of general definite integral with respect to 
another function).

If (1)
, ( )D ( )t g tψ⋅  exists and (1) ( ) 0g t > , then we have:

	 (1) (1)
, ( ) , ( )( ) ( ) D ( )a t g t gt a I tψ ψ ψ⋅ ⋅ − =   	 (13)

Theorem 10. (The mean value theorem for general definite integral with respect to 
another function).

If (1)
, ( )D ( )t g tψ⋅  exists and (1) ( ) 0g t > , then we have:

	 (1)
, ( ) ( ) ( )[ ( ) ( )]a t gI t l g t g aψ ψ⋅ = − 	 (14)

Theorem 11. (The second fundamental theorem of general definite integral with re-
spect to another function).

If (1)
, ( )D ( )t g tψ⋅  exists and (1) ( ) 0g t > , then we have:
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	 (1) (1)
, ( ) , ( )( ) D ( )at g t gt I tψ ψ⋅ ⋅ =   	 (15)

Theorem 12. (The net change theorem for general definite integral with respect to 
another function).

If (1)
, ( )D ( )t g tψ⋅  exists and (1) ( ) 0g t > , then we have:

	 (1) (1)
, ( ) , ( )( ) ( ) D ( )a b g t gb a I tψ ψ ψ⋅ ⋅ − =   	 (16)

Theorem 13. (The integration by parts for general definite integral with respect to 
another function).

If (1)
1, ( )D ( )t g tϕ⋅  and (1)

2, ( )D ( )t g tϕ⋅  exist and (1) ( ) 0g t > , then we have:

	 (1) (1) (1) (1)
2 1 1 2 1 2 1 2, ( ) , ( ) , ( ) , ( )( )D ( ) = ( ) ( ) ( ) ( ) ( )D ( )a at g t g t g t gI t t t t a a I t tϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ⋅ ⋅ ⋅ ⋅   − −    	 (17)

For more details of the analogous proofs, we refer to the results [11]. 
The comparison of the geometric interpretations of the Newton-Leibniz derivative 

and general derivative with respect to another function is illustrated in fig. 1.

( )tφ φ=

φ

[ , ( )]Q t t t tφ+ ∆ + ∆

[ , ( )]Q t tφ

( ) ( )t t tφ φ+ ∆ −

t∆

t tt t+ ∆0

φ
( ) [ ( )]t g tφ ϕ φ= =

{ ( ), [ ( )]}Q g t t g t tφ+ ∆ + ∆

( ) ( ) [ ( )] [ ( )]t t t g t t g tϕ ϕ φ φ+ ∆ − = + ∆ −

{ ( ), [ ( )]}Q g t g tφ

( ) ( )g t t g t+ ∆ −

0 ( )g t ( )g t t+ ∆ ( )g t

Figure 1. The geometric interpretations of the Newton-Leibniz derivative and general derivative with 
respect to another function

The comparison of the geometric interpretations of the Newton-Leibniz integral and 
general integral with respect to another function is illustrated in fig. 2.

General calculus with respect to positive scaling law function

To determine the behavior of the positive scaling law function in nature [8], we intro-
duce the following general calculus with respect to positive scaling law function.

The general derivative with respect to positive scaling law function is defined [2]:

	 (1)
1

1 d ( )D ( )
dSL t

tt
ttβ

ϕϕ
βκ −= 	 (18)

where tβκ  is the positive scaling law function with the normalization constant κ  and the 
scaling exponent β for κ +∈  and β +∈ . 
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The general integral with respect to positive scaling law function is defined:

	 (1) 1( ) ( ) dSL
a t

a

I t t t t
τ

βψ βκ ψ −= ∫ 	 (19)

with (1) (1)( ) D [ ( )]SL
SL t a tt I tψ ψ=  and (1) (1)( ) ( ) [ D ( )]SL

a t SL tt a I tψ ψ ψ− = . 
Taking the different values of the parameters, we have the following results:
(M1) When 1κ = , one has the general derivative with respect to power-law function 

defined by [1-3]:

	 (1)
1

1 d ( )D ( )
dP t

tt
ttβ

ϕϕ
β −= 	 (20)

and the general integral with respect to power-law function defined by [1-3]:

	 (1) 1( ) ( ) dP
a t

a

I t t t t
τ

βψ β ψ −= ∫ 	 (21)

with (1) (1)( ) D [ ( )]P
P t a tt I tψ ψ=  and (1) (1)( ) ( ) [ D ( )]P

a t P tt a I tψ ψ ψ− = . 
(M2) When 1β = , one has the general derivative with respect to the monotone func-

tion defined:

	 (1) 1 d ( )D ( )
dL t

tt
t

ϕϕ
κ

= 	 (22)

and the general integral with respect to power-law function defined:

	 (1) ( ) ( )dL
a t

a

I t t t
τ

ψ κ ψ= ∫ 	 (23)

with (1) (1)( ) D [ ( )]L
L t a tt I tψ ψ=  and (1) (1)( ) ( ) [ D ( )]L

a t L tt a I tψ ψ ψ− = . 
(M3) When 1κ =  and 1β = , one has the Newton-Leibniz calculus [9-11].
The basic results of the general calculus with respect to positive scaling law function 

are presented as follows:

( )ktψ ( )tψ ψ=
[ ( )]kg tΩ

( ) [ ( )]t g tψ ψ= = Ω

Figure 2. The geometric interpretations of the Newton-Leibniz integral and general 
integral with respect to another function
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If ( ) n nt t βϕ κ=  for n∈ , then there exists:

	 (1) 1 ( 1)D ( ) n n
SL t t n t βϕ κ − −= 	 (24)

If 1 ( 1)( ) n nt n t βψ κ − −=  for n∈ , then there exists:

	 (1)
0 ( )SL n n

tI t t βψ κ= 	 (25)

If ( ) e tt
βλκϕ = , where etβ  is the Kohlrausch-Williams-Watts function [7, 12-14] and

λ ∈ , then there exists:

	 (1)D ( ) ( )SL t t tϕ λϕ=  and (1) 2D ( ) ( )SL t t tϕ λ ϕ= 	 (26a, b)

If ( ) e tt
βλκψ λ=  for λ ∈ , then there exists:

	 (1)
0 ( ) eSL t

tI t
βλκψ = 	 (27)

If ( ) e et tt t
β βλκ β λκψ η κ− −= +  for λ ∈, then there exists:

	 (1)D ( ) ( ) e t
SL t t t

βλκϕ λψ −= − + 	 (28)

If ( ) ei tt
βλκϕ η= , where 1/2( 1)i = −  and λ ∈ , then there exists:

	 (1)D ( ) ( )SL t t i tϕ λϕ=  and (2) 2D ( ) ( )SL t t tϕ λ ϕ= − 	 (29a, b)

where the subcurve is given:

	 e [subcos( ) subsin( )]i t t i t
βλκ β βη η λκ λκ= + 	 (30)

with the subsine function defined:

	 ( )1subsin( ) e e
2

i t i tt
i

β ββ λκ λκλκ −= − 	 (31)

and the subcosine function defined:

	 ( )1subcos( ) e e
2

i t i tt
β ββ λκ λκλκ −= + 	 (32)

If ( ) subcos( )t tβϕ λκ= , where λ ∈ , then there exist:

	 (1)D ( ) subsin( )SL t t tβϕ λ λκ= −  and (2) 2 2D ( ) subcos( ) ( )SL t t t tβϕ λ λκ λ ϕ= − = − 	 (33a, b)

If ( ) subsin( )t tβϕ λκ= , where 1/2( 1)i = −  and λ ∈ , then there exists:

	 (1)D ( ) subcos( )SL t t tβϕ λ λκ=  and ( ) ( ) ( ) ( )2 2 2D subsinSL t t t tβϕ λ λκ λ ϕ= − = − 	 (34a, b)

If ( ) subcosh( )t tβϕ λκ= , where λ ∈ , then there exist:

	 (1)D ( ) subsinh( )SL t t tβϕ λ λκ=  and (2) 2 2D ( ) subcosh( ) ( )SL t t t tβϕ λ λκ λ ϕ= = 	 (35a, b)
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where the hyperbolic subcosine function defined:

	 ( )1subcosh( ) e e
2

t tt
β ββ λκ λκλκ −= + 	 (36)

and the hyperbolic subsine function defined:

	 ( )1subsinh( ) e e
2

t tt
β ββ λκ λκλκ −= − 	 (37)

If ( ) subsinh( )t tβϕ λκ= , where λ∈, then there exist:

	 (1)D ( ) subcosh( )SL t t tβϕ λ λκ=  and (2) 2 2D ( ) subsinh( ) ( )SL t t t tβϕ λ λκ λ ϕ= = 	 (38a, b)

If ( ) e tt
βλψ λ=  for λ∈ , then there exists:

	 (1)
0 ( ) eP t

tI t
βλκψ = 	 (39)

If ( ) ei tt
βλϕ η= , where 1/2( 1)i = −  and λ∈ , then there exists:

	 (1)D ( ) ( )P t t i tϕ λϕ=  and (2) 2D ( ) ( )P t t tϕ λ ϕ= − 	 (40a, b)

where the subcurve is presented:

	 e subcos( ) subsin( )i t t i t
βλ β βη η λ λ = +  	 (41)

with subcos( ) (e e )/2i t i tt
β ββ λ λλ −= +  and subsin( ) (1/2 )(e e )i t i tt i

β ββ λ λλ −= − .
If ( ) subcos( )t tβϕ λ= , where λ∈, then there exist:

	 (1)D ( ) subsin( )P t t tβϕ λ λ= −  and (2) 2 2D ( ) subcos( ) ( )P t t t tβϕ λ λ λ ϕ= − = − 	 (42a, b)

If ( ) subsin( )t tβϕ λ= , where 1/2( 1)i = −  and λ∈ , then there exists:

	 (1)D ( ) subcos( )P t t tβϕ λ λ=  and (2) 2 2D ( ) subsin( ) ( )SL t t t tβϕ λ λκ λ ϕ= − = − 	 (43a, b)

If ( ) subcosh( )t tβϕ λ= , where λ∈, then there exist:

	 (1)D ( ) subsinh( )P t t tβϕ λ λ=  and (2) 2 2D ( ) subcosh( ) ( )P t t t tβϕ λ λ λ ϕ= = 	 (44a, b)

where

	 ( )1subcosh( ) e e
2

t tt
β ββ λ λλ −= +  and ( )1subsinh( ) e e

2
t tt
β ββ λ λλ −= − 	 (45a, b)

Suppose that ( ) subsinh( )t tβϕ λ= , where λ∈ , then there exist:

	 (1)D ( ) subcosh( )P t t tβϕ λ λ=  and (2) 2 2D ( ) subsinh( ) ( )P t t t tβϕ λ λ λ ϕ= = 	 (46a, b)

It is seen that:

	 2 2subcos ( ) subsin ( ) 1t tβ βλκ λκ+ =  and 2 2subcos ( ) subsin ( ) 1t tβ βλκ λκ+ = 	(47a, b)
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General calculus with respect to exponential function 

To decribe the behavior of the complex materials, we introduce the following general 
calculus with respect to exponential function.

The general derivative with respect to exponential function is defined [1-3]:

	 ( )(1) d1D ( )
deE t t

t
t

tλ

ϕ
ϕ

λρ
= 	 (48)

where ,λ ρ ∈ .
The general definite integral with respect to exponential function is defined [1-3]:

	 (1) ( ) ( )e d
t

E t
a t

a

I t t tλψ λρ ψ= ∫ 	 (49)

where a∈.
Their relationships between eqs. (48) and (49) can be written [1-5]:

	 (1)1 d d( ) ( ) e ( )e d
d de

t
E t t
a tt

a

t I t t t
t t

λ λ
λψ ψ ψ

λρ
−   = =   

  
∫ 	 (50)

and

	
0

d ( )( ) e e d ( )
d

t
t ttt t a

t
λ λψψ ψ− = + 

 ∫ 	 (51)

The Boltzmann type superposition principles  
for the anomalous linear viscoelasticity

Let ( )tε  be the strain, ( )tσ  be the stress, t  be the time, ( )G t  be the relaxation mod-
ulus, ( )J t  be the creep compliance, iσ∆  be the discrete stress increment applied at time it τ= , 

iε∆  be the discrete strain increment applied at time it τ= , 0σ  be the constant strain, and 0ε  be 
the constant strain.

The Boltzmann superposition principle for the linear 
viscoelasticity

With the Boltzmann superposition principle [4], one has:

	
1

( ) ( )
n

i i
i

t J tε σ τ
=

= ∆ −∑ 	 (52)

which can be written:

	
1

( ) ( )
n

i
i i

i i
t J t σ

ε τ τ
τ=

∆
= − ∆

∆∑ 	 (53)

In this case, one has from eq. (53) that:

	 d ( )( ) ( ) d
d

t

t J t σ τε τ τ
τ−∞

= −∫ 	 (54)
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which leads to:

	 ( )
0

0

d
( ) ( ) ( ) d

d
J

t J t t
τ

ε σ σ τ τ
τ

∞

= + −∫ 	 (55)

In an analogous manner, one has:

	
1

( ) ( )
n

i i
i

t G tσ ε τ
=

= ∆ −∑ 	 (56)

which leads to:

	
1

( ) ( )
n

i
i i

i i
t G t ε

σ τ τ
τ=

∆
= − ∆

∆∑ 	 (57)

Here, one has from eq. (57) that:

	 ( )d
( ) ( ) d

d

t

t G t
ε τ

σ τ τ
τ−∞

= −∫ 	 (58)

which can be given:

	 ( )
0

0

d
( ) ( ) ( ) d

d
G

t G t t
τ

σ ε ε τ τ
τ

∞

= + −∫ 	 (59)

The Boltzmann type superposition principle for the anomalous 
linear viscoelasticity within the power-law function

To decribe the behavior of the complex materials, we present the Boltzmann type su-
perposition principle within the general calculus with respect to power-law function.

From eq. (55) one has:

	 1 (1)
0

0

( ) ( ) ( ) D ( )dSL tt J t t Jβε σ βκ σ τ τ τ τ
∞

−= + −∫ 	 (60)

which can be written:

	 1 (1)( ) ( ) D ( )d
t

SL tt J t βε βκ τ τ σ τ τ−

−∞

= −∫ 	 (61)

which leads to:

	
1

( ) ( )
n

i i
i

t J tε σ τ
=

= ∆ −∑ 	 (62)

In an analogous manner, one has:

	 1 (1)
0

0

( ) ( ) ( ) D ( )dSL tt G t t Gβσ ε βκ ε τ τ τ τ
∞

−= + −∫ 	 (63)

which can be written:
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	 1 (1)( ) ( ) D ( )d
t

SL tt G t βσ βκ τ τ ε τ τ−

−∞

= −∫ 	 (64)

which leads to:

	
1

( ) ( )
n

i i
i

t G tσ ε τ
=

= ∆ −∑ 	 (65)

The Boltzmann type superposition principle for the anomalous 
linear viscoelasticity within the exponential function 

To describe the behavior of the complex materials, we introduce the Boltzmann type 
superposition principle within the general calculus with respect to exponential function.

From eq. (55) one has:

	 (1)
0

0

( ) ( ) ( )e D ( )dt
E tt J t t Jλε σ λρ σ τ τ τ

∞

= + −∫ 	 (66)

which can be given:

	 (1)( ) ( )e D ( )d
t

t
E tt J t λε λρ τ σ τ τ

−∞

= −∫ 	 (67)

which implies that:

	
1

( ) ( )
n

i i
i

t J tε σ τ
=

= ∆ −∑ 	 (68)

In an analogous manner, one has:

	 (1)
0

0

( ) ( ) ( )e D ( )dt
E tt G t t Gλσ ε λρ ε τ τ τ

∞

= + −∫ 	 (69)

which can be presented:

	 (1)( ) ( )e D ( )d
t

t
E tt G t λσ λρ τ ε τ τ

−∞

= −∫ 	 (70)

which can be written:

	
1

( ) ( )
n

i i
i

t G tσ ε τ
=

= ∆ −∑ 	 (71)

Conclusion 

In our work the theorems for the general calculus operators with respect to another 
function were considered. The sub-trigonometric functions via Kohlrausch-Williams-Watts 
function are proposed and their characteristic equations were discussed in detail. The discrete 
forms of the Boltzmann type superposition principles are same but their integral forms are dif-
ferent due to the different quantitative concepts of anomalous rheology for solid mechanics. The 
results can be used to explain the Kohlrausch-Williams-Watts decay law in complex materials. 
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Nomenclature
t	 –	time, [s] 

Greek symbols

Δεi	 –	discrete strain increment, [–]

Δσi	 –	discrete stress increment, [Pa]
ε(t)	 –	strain, [–]
σ(t)	 –	stress, [Pa]
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