THERMAL SCIENCE
International Scientific Journal
NEW GENERAL CALCULI WITH RESPECT TO ANOTHER FUNCTIONS APPLIED TO DESCRIBE THE NEWTON-LIKE DASHPOT MODELS IN ANOMALOUS VISCOELASTICITY
ABSTRACT
In this article, we address the general derivatives and integrals with respect to another function for the first time. We consider the new perspective in anomalous viscoelasticity containing the general derivatives with respect to another functions containing the power-law, exponential, and logarithmic functions. The results are accurate and efficient in the descriptions of the complex behaviors of the materials.
KEYWORDS
PAPER SUBMITTED: 2018-09-21
PAPER REVISED: 2019-01-13
PAPER ACCEPTED: 2019-02-18
PUBLISHED ONLINE: 2019-06-08
THERMAL SCIENCE YEAR
2019, VOLUME
23, ISSUE
Issue 6, PAGES [3751 - 3757]
- Eves, H., An Introduction to the History of Mathematics, Holt, Rinehart and Winston, New York, 1964
- Yang, X. J., et al., Local Fractional Integral Transforms and their Applications, Academic Press, 2015
- Liouville, J., Memoire sur le calcul des different idles a indices quelconques, Journal de EcolePolytechnique, 13(1832), 21, pp.71-162
- Riemann, B., Versucheinerallgemeinen auffassung der integration und differentiation, Bernhard RiemannsGesammelteMathematischeWerke, 1847, Janvier, pp. 353-362
- Samko, S. G., et al., Integration and Differentiation to a Variable Fractional Order, Integral Transforms and Special Functions, 1(1993), 4, pp.277-300
- Osler, T. J., The Fractional Derivative of a Composite Function, SIAM Journal on Mathematical Analysis, 1(1970),2, pp.288-293
- Yang, X. J., et al., A New Fractional Operator of Variable Order: Application in the Description of Anomalous Diffusion, Physica A, 481(2017), pp.276-283
- Yang, X. J., General Fractional Derivatives: Theory, Methods and Applications, CRC Press, 2019
- Newton, I., Scala graduum caloris, Philosophical Transactions of the Royal Society London, 22(1701 in Latin), pp.824- 829
- Blair, G. S., The Role of Psychophysics in Rheology, Journal of Colloid Science, 2(1947), 1, pp.21-32
- Caputo, M., et al., Linear Models of Dissipation in Anelastic solids, La Rivista del Nuovo Cimento, 1(1971), 2, pp.161-198
- Nutting, P. G., A New General Law of Deformation, Journal of the Franklin Institute, 191(1921), 5, pp.679-685
- Chen, W., Time-space Fabric Underlying Anomalous Diffusion, Chaos, Solitons & Fractals, 28(2006), 4, pp.923-929
- Cai, W., et al., Characterizing the Creep of Viscoelastic Materials by Fractal Derivative Models, International Journal of Non-Linear Mechanics, 87(2016), December, pp.58-63