THERMAL SCIENCE
International Scientific Journal
AN ANALYTICAL SOLUTION FOR SOLVING A NEW WAVE EQUATION WITHIN LORENZO-HARTLEY KERNEL
ABSTRACT
In this article we investigate the general fractional-order derivatives of the Riemann-Liouville type via Lorenzo-Hartley kernel, general fractional-order integrals and the new general fractional-order wave equation defined on the definite domain with the analytical solution.
KEYWORDS
PAPER SUBMITTED: 2018-10-11
PAPER REVISED: 2019-01-11
PAPER ACCEPTED: 2019-01-28
PUBLISHED ONLINE: 2019-06-08
THERMAL SCIENCE YEAR
2019, VOLUME
23, ISSUE
Issue 6, PAGES [3739 - 3744]
- Yang, X. J., General Fractional Derivatives: Theory, Methods and Applications, New York, CRC Press, 2019
- Caputo, M., et al., A New Definition of Fractional Derivative without Singular Kernel, Progress in Fractional Differentiation and Applications, 1 (2015), 2, pp.73-85
- Mittag-Leffler, G., Sur la Représentation Analytique d'une Branche Uniforme d'une Fonction Monogène: Cinquième Note, Acta mathematica, 29(1905), 1, 101-181
- Rabotnov, Y., Equilibrium of an Elastic Medium with After-Effect, Fractional Calculus and Applied Analysis, 17(2014), 3, pp.684-696
- Miller, K. S., et al., An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, 1993
- Yang, X. J., et al., Fundamental Solutions of Anomalous Diffusion Equations with the Decay Exponential Kernel, Mathematical Methods in the Applied Sciences, 2019, April, DOI: 10.1002/mma.5634
- Yang, X. J., et al., Fundamental Solutions of the General Fractional-Order Diffusion Equations, Mathematical Methods in the Applied Sciences, 41(2018), 18, pp.9312-9320
- Lorenzo, C. F., et al., Generalized Functions for the Fractional Calculus, Critical Reviews in Biomedical Engineering, 36(2008), 1, pp.39-55