THERMAL SCIENCE
International Scientific Journal
A NEW GENERAL FRACTIONAL-ORDER DERIVATIVE WITH RABOTNOV FRACTIONAL-EXPONENTIAL KERNEL
ABSTRACT
In this article, a general fractional-order derivative of the Riemann-Liouville type with the non-singular kernel involving the Rabotnov fractional-exponential function is addressed for the first time. A new general fractional-order derivative model for the anomalous diffusion is discussed in detail. The general fractional-order derivative operator formula is as a novel and mathematical approch proposed to give the generalized presentation of the physical models in complex phenomena with power law.
KEYWORDS
PAPER SUBMITTED: 2018-08-25
PAPER REVISED: 2018-10-11
PAPER ACCEPTED: 2018-12-22
PUBLISHED ONLINE: 2019-06-08
THERMAL SCIENCE YEAR
2019, VOLUME
23, ISSUE
Issue 6, PAGES [3711 - 3718]
- Yang, X. J., General Fractional Derivatives: Theory, Methods and Applications, New York, CRC Press, 2019
- Kochubei, A. N., General Fractional Calculus, Evolution Equations, and Renewal Processes, Integral Equations and Operator Theory, 71(2011), 4, pp.583-600
- Luchko, Y., et al., General Time-Fractional Diffusion Equation: some Uniqueness and Existence Results for the Initial-Boundary-Value Problems, Fractional Calculus and Applied Analysis, 19(2016), 3, pp.676-695
- Yang, X. J., et al., Anomalous Diffusion Models with General Fractional Derivatives within the Kernels of the Extended Mittag-Leffler Type Functions, Romanian Reports in Physics, 69 (2017), 4, Article ID 115
- Liouville, J., Memoire sur le calcul des different idles a indices quelconques, Journal de EcolePolytechnique, 13(1832), 21, pp.71-162
- Riemann, B., Versucheinerallgemeinen auffassung der integration und differentiation, Bernhard RiemannsGesammelteMathematischeWerke, 1847, Janvier, pp. 353-362
- Weyl, H., Bemerkungenzum begriff des differential quotienten gebrochener ordnung, Vierteljal&Rechrift tier NtdrforchentlenGeellchaft in Zirich, 62(1917), 1-2, pp.296-302
- Sonine, N., Sur la differentiation a indice quelconque, MatematicheskiiSbornik, 6(1872), 1, pp.1-38
- Caputo, M., Linear Models of Dissipation whose Q is almost Frequency Independent II, Geophysical Journal International, 13(1967), 5, pp.529-539
- Caputo, M., et al., A New Definition of Fractional Derivative without Singular Kernel, Progress in Fractional Differentiation and Applications, 1(2015), 2, pp.1-13
- Miller, K. S., et al., An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley & Sons. New York, 1993
- Lorenzo, C. F., et al., The Fractional Trigonometry: With Applications to Fractional Differential Equations and Science, John Wiley & Sons, 2016
- Goreno R., et al., Fractional Oscillations and Mittag-Leffler Functions, International Workshop on the Recent Advances in Applied Mathematics (RAAM96), State of Kuwait, Proceedings, Kuwait University, 193-208, 1996
- Samko, S. G., et al., Fractional Integrals and Derivatives: Theory and Applications, Switzerland, Gordon and Breach Science, 1993
- Hille, E., et al., On the Theory of Linear Integral Equations, Annals of Mathematics, 31(1930), 3, pp.479-528
- Yang, X. J., Theoretical Studies on General Fractional-Order Viscoelasticity, Ph.D Thesis, China University of Mining and Technology, Xuzhou, China, December, 2017
- Tomovski, Ž., et al., Fractional and Operational Calculus with Generalized Fractional Derivative Operators and Mittag-Leffler Type Functions, Integral Transforms and Special Functions, 21(2010), 11, pp.797-814
- Yang, X. J., et al., A New Fractional Derivative Involving the Normalized Sinc Function without Singular Kernel, The European Physical Journal Special Topics, 226(2017), 16-18, pp.3567-3575
- Yang, X. J., et al., Local Fractional Integral Transforms and their Applications, Academic Press, 2015
- Rabotnov, Y., Equilibrium of an Elastic Medium with after Effect (in Russian), Prikladnaya Matematikai Mekhanika, 12(1948), 1, pp.53-62
- Meshkov, S. I., et al., Internal Friction Described with the aid of Fractionally-Exponential Kernels, Journal of Applied Mechanics and Technical Physics, 7(1969), 3, pp.63-65
- Yang, X. J., et al., A New General Fractional-Order Derivatiive with Rabotnov Fractional-Exponential Kernel Applied to Model the Anomalous Heat Transfer, Thermal Science, 23(2019), 3, DOI: 10.2298/TSCI180320239Y
- Kolmogorov, A. N., et al., Fundamentals of the Theory of Functions and Functional Analysis, Moscow, Nauka, 1968
- Prabhakar, T. R., A Singular Integral Equation with a Generalized MittagLeffler Function in the Kernel, Yokohama Mathematical Journal, 19(1971),1, pp.7-15