THERMAL SCIENCE
International Scientific Journal
NUMERICAL SOLUTION OF FRACTIONAL ORDER ADVECTION-REACTION DIFFUSION EQUATION
ABSTRACT
In this paper, the Laplace transform method is used to solve the advection-diffusion equation having source or sink term with initial and boundary conditions. The solution profile of normalized field variable for both conservative and non-conservative systems are calculated numerically using the Bellman method and the results are presented through graphs for different particular cases. A comparison of the numerical solution with the existing analytical solution for standard order conservative system clearly exhibits that the method is effective and reliable. The important part of the study is the graphical presentations of the effect of the reaction term on the solution profile for the non-conservative case in the fractional order as well as standard order system. The salient feature of the article is the exhibition of stochastic nature of the considered fractional order model.
KEYWORDS
PAPER SUBMITTED: 2017-06-24
PAPER REVISED: 2017-11-13
PAPER ACCEPTED: 2017-12-20
PUBLISHED ONLINE: 2018-02-18
THERMAL SCIENCE YEAR
2018, VOLUME
22, ISSUE
Supplement 1, PAGES [S309 - S316]
- Havlin, S., Ben- Avraham, D., Diffusion in disordered media, Advances in Physics 51 (2002), pp. 187-292
- Lee, B. P., Renormalization group calculation for the reaction kA to OE, J. Phys. A 27 (1994), pp. 2633-2652
- Crank, J., The mathematics of Diffusion, Oxford Univ. Press, London, 1956.
- Hilfer, R., Anton, L., Fractional master equations and fractal time random walks, Phys. Rev. E 51 (1995), pp. 848-851
- Hilfer, R., Exact solutions for a class of fractal time random walks, Fractals 3 (1995), pp. 211-216
- Gorenflo, R., et al., Discrete random walk models for space-time fractional diffusion, Chem. Phys. 284 (2002), pp. 512-541
- Metzler, R., et al., Anomalous Diffusion and relaxation close to thermal equilibrium: A fractional Fokker-Planck equation approach, Phys. Rev. Lett. 82 (1999), pp. 3563-3567
- Metzler, R., Klafter, J., The random walk's guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep. 339 (2000), pp. 1-77
- Langlands, T. A. M., Henry, B.I., The accuracy and stability of an implicit solution method for the fractional diffusion equation, J. Comp. Physics. A 205 (2005), pp. 719-736
- Yuste, S.B., Lindenberg, K., Subdiffusion-Limited A+A Reaction, Phys. Rev. Lett. 87 (2001), pp. 118301-118304
- Weiss, G.H., Aspects and applications of the Random Walk, North Holland, Amsterdam, 1994
- Hughes, B.D., Random Walks and Random Environments, Clarendon Press, Oxford, 1995
- Henry, B.I., Wearne, S.L., Fractional reaction-diffusion, Phys. A. 276 (2000), pp. 448-455
- Chen, C.M., et al., A Fourier method for the fractional diffusion equation describing subdiffusion, J. Compt. Phys. 227 (2007), pp. 886-897
- Schot, A., et al., Fractional diffusion equation with an absorbent term and a linear external force: Exact solution, Phys. Lett. A. 366 (2007), pp. 346-350
- Zahran, M.A., On the derivation of fractional diffusion equation with an absorbent term and a linear external force, Appl. Math. Model. 33 (2009), pp. 3088-3092
- Angulo, J.M., et al., Fractional diffusion and fractional heat equation, Adv. Appl. Prob. 32 (2000), pp. 1077-1099
- Pezat, S., Zabczyk, J., Nonlinear stochastic wave and heat equations, Probab. Theory Reltal. Fields 116 (2000), pp. 421-443
- Schneider, W.R., Wyss, W., Fractional diffusion and wave equations, J. Math. Phys. 30 (1989), pp. 134-144
- Yu, R., Zhang, H., New function of Mittag- Leffler type and its application in the fractional diffusion-wave equation, Chaos. Solit. Fract. 30 (2006), pp. 946-955
- Mainardi, F., The fundamental solutions for the fractional diffusion-wave equation, Appl. Math. Lett. 9 (1996), pp. 23-28
- Mainardi, F., et al., The fundamental solution of the space- time fractional diffusion equation, Frac. Calc. Appl. Anal. 4 (2001), pp. 153-192
- Anh, V.V., Leonenko, N.N, Harmonic analysis of random fractional diffusion-wave equations, Appl. Math. Comput. 141 (2003), pp. 77-85
- Sierociuk, D., et al., Diffusion process modeling by using fractional-order models, Applied Math. Comput. 257 (2015), pp. 2-11
- Ervin, V.J., et al., Regularity of the Solution to 1-D Fractional Order Diffusion Equations, arXiv: 1608.00128
- Cui, M., A high-order compact exponential scheme for the fractional convection-diffusion equation, J. of Comput. and Appl. Math. 255 (2014), pp. 404-416
- Zheng, G.H., Wei, T., Spectral regularization method for a Cauchy problem of the time fractional advection-dispersion equation, J. of Comput. and Appl. Math. 233 (2010), pp. 2631-2640
- Das, S., A note on fractional diffusion equations, Chaos, Solitons and Fractals 42 (2009), pp. 2074-2079
- Tripathi, D, et al., Influence of slip condition on peristaltic transport of a viscoelastic fluid with fractional Burger's model, Thermal Science 15 (2011), pp. 501-515
- Walther, É., et al., Lattice Boltzmann method and diffusion in materials with large diffusivity ratios, Thermal Science, Accepted (2017)
- Davies, B., Martin, B., Numerical inversion of the Laplace transform: a survey and comparison of methods, J. Comput. Phys. 33 (1979), pp. 1-32
- Piessens, R., Huysmany, R., Algorithm 619: automatic numerical inversion of the Laplace transform, ACM Trans. Math. Soft. 10 (1984), pp. 348-353
- Weeks, W.T., Numerical inversion of the Laplace transform using Laguerre functions, J. ACM 13 (1966), pp. 419-429
- Lyness, J.N., Giunta, G., A modification of the Weeks method for numerical inversion of the Laplace transform, Math. Comput. 47 (1986), pp. 313-322
- Piessens, R., Branders, M., Numerical inversion of the Laplace transform using generalized Laguerre polynomials, Proc. IEE 118 (1971), pp. 1517-1522
- McWhirter, J.G., Pike, E.R., On the numerical inversion of the Laplace transform and similar Fredholm integral equations of the first kind, J. Phys. A: Math. Gen. 11 (1978), pp. 1729-1745
- Bellman, R., et al., A numerical inversion of the Laplace Transform, The Rand Corporation, RM-3513-ARPA (1963)
- Ueda, S., On some numerical inversion Methods of the Laplace Transform, Bulletin of the Education Faculty, Shizuoka University, Natural science series, 38 (1988), pp. 97-105
- Podlubny, I., Fractional Differential Equations, Academic Press, San Diego. CA, 1999
- Gorenflo, R., Mainradi, F., Essentials of fractional calculus. Preprint submitted to Maphysto Centre, Preliminary version 2000.
- Oldham, K, and Spanier, J., The fractional calculus, Academic Press. New York, London, 1974.