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In this paper, the Laplace transform method is used to solve the advection-diffusion 
equation having source or sink term with initial and boundary conditions. The 
solution profile of normalized field variable for both conservative and non-con-
servative systems are calculated numerically using the Bellman method and the 
results are presented through graphs for different particular cases. A comparison 
of the numerical solution with the existing analytical solution for standard order 
conservative system clearly exhibits that the method is effective and reliable. The 
important part of the study is the graphical presentations of the effect of the re-
action term on the solution profile for the non-conservative case in the fractional 
order as well as standard order system. The salient feature of the article is the 
exhibition of stochastic nature of the considered fractional order model.
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non-conservative system, evolutionary process

Introduction

It is known to us that the process diffusion is a physical process where molecules of 
a material move from an area of high concentration to an area of low concentration. The word 
had been derived from the Latin word diffundere, which means spread out of a substance from 
an area of high concentration to an area of low concentration. An important feature of diffusion 
is that it is dependent on particle random walk. Diffusion usually occurs in a solution in gas or 
in a liquid. It describes the constant movement of particles in all directions bumping into each 
other in all kinds of liquids and gases.

Diffusion is important to living things as it explains how useful materials and waste prod-
ucts can move from high concentration to the low concentration of the cells. We know that the 
quantity of oxygen is more in lung than in the blood, while there are more CO2 molecules in the 
blood than in the lung. So oxygen molecules will tend to move from lung into the blood, whereas 
CO2 molecules will tend to move into the lung from blood. In cell biology, the small molecules are 
simply diffused through the cell membrane, but larger molecules only get through using energy.

The spontaneous movement of particles occurring due to the difference of concentra-
tion between substances or molecules between two areas (along the concentration gradient) is 
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relative to the phenomena of diffusion. In biology, diffusion is a type of passive transport which 
means that it is a net movement of molecules in and out of the cell through the cell membrane. 
Diffusion does not involve chemical energy unlike the case of active transport. Facilitated dif-
fusion occurs when molecules diffuse via special transport proteins found within the membrane.

Physically the diffusion or advection-diffusion equation becomes useful to investigate, 
the catalytic processes in regular, heterogeneous, or disordered systems (Havlin and Ben-Avra-
ham [1] and Lee [2]). Another example is an irreversible first-order reaction of transported sub-
stance so that the rate of removal is proportional to the field variable as given by Crank [3]. The 
aforemenioned type of anomalous diffusion is a ubiquitous phenomenon in nature and appears 
in different branches of science and engineering. 

Einstein’s theory of Brownian motion reveals that the mean square displacement of a 
particle moving randomly is proportional to time. But after the advancement of fractional cal-
culus, it is seen that the mean square displacement for an anomalous diffusion equation having 
time fractional derivative grows slowly with time. For the simple fractional order diffusion 
equation 2 2( / ) ( / )u t u xα α∂ ∂ = ∂ ∂ , the mean square displacement is 2 ( )X t tα≈ , where 0 1α< <  is 
the anomalous diffusion exponent. An important characteristic of this evolution equation is that 
it generates the fractional Brownian motion, a generalization of Brownian motion. If we replace 
the integer order with fractional order time derivative, it changes the fundamental concept of 
time and thus the concept of evolution in the foundations of physics. The fractional order deriv-
ative has a physical meaning related to the statistics of waiting times according to the Mon-
troll-Weiss theory. The relation was established by R. Hilfer through his two research articles. 
Through the first one, Hilfer and Anton [4] showed that Montroll-Weiss continuous time ran-
dom walks with a Mittag-Leffler waiting time density are rigorously equivalent to a fractional 
master equation. After that through the other article Hilfer [5] explained that this underlying 
random walk the model is connected to the fractional time diffusion equation in the usual as-
ymptotic sense of long times and large distances. Thus for simulating diffusive phenomena of a 
simple model it needs the random walk approach. 

Gorenflo et al. [6] gave an important result stating that the time fractional diffusion 
of order α, 0 < α < 1 generates a class of symmetric densities whose moments of order 2m are 
proportional to the mα power of time. We thus obtain a class of non-Markovian stochastic pro-
cesses, which exhibit a variance consistent with slow anomalous diffusion. Metzler et al. [7] 
have shown that anomalous diffusion is based upon Boltzman statistics using fractional order 
Fokker-Plank equation approach. Many researchers have used fractional equations during de-
scription of Levy flights or diverging diffusion. Since ultimate behavior of the fractional order 
system response converges to the response of the integer-order version of the model, therefore, 
the fractional calculus is known as the extension of classical mathematics. In the last two de-
cades, fractional differential equations have been widely used by the researchers not only in sci-
ence and engineering but also in economics and finance. It is also a powerful tool in modeling 
multi scale problems, characterized by wide time or length scale. The attribute of the fractional 
order differential operator is its non-local property, which takes into account the fact that the 
future state not only depends upon the present state but also upon all of the history of its previ-
ous states. Nowadays, the fractional order system has gained popularity in the investigation of 
dynamical system since it allows greater flexibility in the model.

Before penetrating from mathematics of fractional calculus to the physical systems, 
one should have to keep in mind two things, firstly to analyze the importance and physical 
influence of the memory effects on time and secondly to give proper interpretation of general 
meaning of non integer operator. The main advantage of the fractional calculus is that it provides 



Das, S., et al.: Numerical Solution of Fractional Order Advection-Reaction-Diffusion Equation 
THERMAL SCIENCE: Year 2018, Vol. 22, Suppl. 1, pp. S309-S316	 S311

an excellent instrument for the description of memory effect of various materials and processes. 
Fractional derivatives and integrals are useful to explore the characteristic features of anomalous 
diffusion, transport and fractal walks through setting up of fractional kinetic equations, which 
are very much useful in the context of anomalous sub-diffusion Metzler and Klafter [8]. The 
fractional diffusion equation, which demonstrates the occurrence of anomalous sub-diffusion, 
had already been given an intensive effort to find the accurate solution in straight forward man-
ner Langlands and Henry [9]. The fractional diffusion equation is useful to describe reactions in 
the dispersive transport media Yuste and Lindenberg [10]. Anomalous diffusion processes occur 
in many physical systems for various reasons including disorder in terms of energy or space or 
both Weiss [11], Hughes [12]. Fractional reaction-diffusion equations or continuous time ran-
dom walk models are also introduced for the description of propagating fronts and two species 
reactions in sub-diffusive transport media Henry and Wearne [13]. Chen et al. [14] proposed an 
implicit difference approximation scheme for solving fractional diffusion equation. Schot et al. 
[15] have given an approximate solution of the diffusion equation in terms of Fox H-function. 
Zahran [16] has given a closed form solution in terms of Fox H-function of the generalized frac-
tional reaction-diffusion equation. Many research on fractional order diffusion equations have 
already been done by Angulo et al. [17], Pezat and Zabczyk [18], Schneider and Wyss [19],Yu 
and Zhang [20], Mainardi [21], Mainardi et al. [22], Anh and Leonenko [23], Sierociuk et al. 
[24], Ervin et al. [25], Cui [26], Zheng and Wei [27], Das [28], Tripathi et al. [29], Waldher [30].

Analytic inversion of the Laplace transform is defined as contour integration in the 
complex plane employing the Cauchy’s residue theorem by taking the Bromwich contour. For 
complicated ( ) [ ( )]=F p L f t , it is too difficult to perform even using symbolic softwares like 
MATLAB or MATHEMATICA. Therefore, it is needed to study some alternative methods,  
[31-37], to tackle the problem. Bellman et al. [37] proposed a numerical method known as 
Bellman method to calculate the inverse Laplace transformation. The other popular methods are 
the Numerical integral method and the fast fourier transform (FFT). The comparison of appli-
cability and accuracy among of these methods and the Bellman method was studied by Ueda 
[38]. In the Bellman method only a few values are sufficient for the inverting process. There-
fore, this method is useful to the problems that require long CPU time to calculate the values in 
the Laplace transformed domain. In both the Numerical integral method and FFT method, few 
parameters are required. In the first one much CPU time is required to invert the problem where 
as in the second one it carry out in less time through proper choice of suitable parameters. In the 
Bellman method the inverse Laplace transform are evaluated at the roots of the shifted Legen-
dre polynomial with the help of Gaussian quadrature formula taking the corresponding weight 
function and finally the function f (t) can be calculated using interpolation. 

In this article the authors have made an endeavor to solve a non-conservative frac-
tional order diffusion equation with boundary conditions through converting it in the frequency 
domain using Laplace transform technique. To get the solution in time domain, the Inverse 
Laplace transform is done using Bellman method. The results obtained using the method for 
different particular cases clearly exhibit that the method is reliable and easy to implement to get 
the solution in the time domain. 

Basic definitions

The definitions and properties related to fractional calculus and the definitions of 
Lapalace transform and its inverse are as follows.

Definition 1. The Riemann-Liouville fractional integral operator of order q > 0 of a 
function ( )f x  is [39, 40]:
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Definition 3. The Caputo order fractional derivative of a function ( )f x  is [1, 2]:
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Definition 4. The Laplace transform of a function f(t) for t > 0 is denoted by 
( ) L[ ( ) ]=F s f t  and is defined by the following integral over 0 to ∞ as:

	
0

L[ ( ) ] ( )e d
∞

−= ∫ stf t f t t

Definition 5. An integral formula for the Inverse Laplace transform, called the Mel-
lin’s inverse formula, is defined through the Bromwich integral is given by the line integral:
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where the integration is done along the vertical line Re( ) γ=s  in the complex plane such that γ 
is greater than the real part of all singularities of F(s) and F(s) is bounded on the line.

Solution of the mathematical model

Let us consider the fractional order advection-diffusion equation with reaction term:
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with 0( ,0) 0, (0, )= =u x u t u , and ( , )u x t  is finite.
Taking the Laplace transformation on both sides with respect to t, we get:
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The solution of the eq. (2) can be written:
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Finally by applying inverse Laplace transformation, we get:
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The 2kth moment of ( , )u x s  is given:
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Therefore,

	 0
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Hence the 2kth moments in the time domain:
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Thus 

	
3

2 2( )
α

≈X t t 	 (8)

which clearly shows that the fractional order advection-reaction-diffusion equation represents 
an evolutionary process.

Results and discussion

The numerical values of the normalized field variable 0( , )/u x t u  for various time and 
for different values of 0.7,0.8,0.9,1.0α =  when v = 0.6 are calculated for both conservative and 
non-conservative systems using Bellman method. During numerical computation the variation 
of probability density function ( , )u x t  is compared with the existing analytical result for stan-
dard order diffusion equation i. e.,

	 0( , ) erfc
2

 =  
 

xu x t u
t

for v = 0 and 0λ =  at 1α =  which is depicted through fig.1. The numerical results which are 
depicted through the figure in absence of advection and reaction terms in standard order conser-
vative system clearly exhibit that the method is effective and reliable. This has motivated us to 
apply our concerned method to find the numerical solution of our considered model for non-con-
servative case ( 0λ ≠ ) for different particular cases. It is seen from figs. 2 and 3 that for both 
conservative and non-conservative systems ( , )u x t  increase with the increase of time for frac-
tional order as well as standard order cases. It is also found that for both the cases the values of 

( , )u x t  initially decrease as α  increases and after a while the results become opposite. The 
important part of the study is the effect of damping of ( , )u x t due to the presence reaction term 
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Figure 1. Comparison of variation of 0( , )/u x t u  
vs. t with analytical result for = 0v  and = 0λ   
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Figure 2. Plots of 0( , )/u x t u  vs. t at α = 0.7, 0.8, 
0.9, 1.0, = 0.6v  for conservation case ( = 0λ )
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for non-conservative case as compared to the 
conservative case.

Conclusion

The authors have achieved three import-
ant goals through this scientific contribution. 
The first one is the solution of the fractional 
order reaction diffusion equation using Laplace 
transformation method and also using it to ex-
hibit the stochastic nature of the model through 
calculations of moments. The second one is a 
comparison of the result with an existing result 
for conservative case to validate the efficiency 
of the Bellman method. The advantages of us-
ing the method over the other existing numer-
ical methods are only a few numbers of values are required to get the complete solution and also 
much less time is required in solving the problem. The third one is the showcasing of the damping 
nature of the solution through graphical presentations for non-conservative case due to effect of 
reaction term. The authors are optimist that the article will be useful to the large section of readers 
working in the field of diffusion equations in standard order as well as fractional order systems.
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