THERMAL SCIENCE

International Scientific Journal

Authors of this Paper

External Links

AN EXPLANATION OF LOCAL FRACTIONAL VARIATIONAL ITERATION METHOD AND ITS APPLICATION TO LOCAL FRACTIONAL MKDV EQUATION

ABSTRACT
The variational iteration method was originally proposed to solve nonlinear problems of differential equations, this paper shows that it is also a powerful mathematical tool to local fractional differential equations. Two local fractional mKdV equations are used as examples to reveal the simple solution process.
KEYWORDS
PAPER SUBMITTED: 2016-05-01
PAPER REVISED: 2016-08-28
PAPER ACCEPTED: 2016-12-29
PUBLISHED ONLINE: 2017-06-04
DOI REFERENCE: https://doi.org/10.2298/TSCI160501143W
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2018, VOLUME 22, ISSUE Issue 1, PAGES [23 - 27]
REFERENCES
  1. He, J. H., A Tutorial Review on Fractal Spacetime and Fractional Calculus, International Journal of Theoretical Physics, 53 (2014),11, pp.3698-3718
  2. Yang, X. J., et al., Local Fractional Integral Transforms and Their Applications, Academic Press, New York, NY, USA, 2015
  3. Yang, X. J., et al., On Exact Traveling-wave Solutions for Local Fractional Korteweg-de Vries Equation, Chaos, 26 (2016), 084312, pp.1-5
  4. Hu, Y., et al., On Fractal Space-time and Fractional Calculus, Thermal Science, 20 (2016), 3, pp.773-777
  5. Guner, O., Bekir, A., Exp-function Method for Nonlinear Fractional Differential Equations, Nonlinear Sci. Lett. A, 8 (2017), 1, pp.41-49
  6. Zhang, S., et al., A Direct Algorithm of Exp-function Method for Nonlinear Evolution Equations in Fluids, Thermal Science, 20 (2016), 33, pp.881-884
  7. Khaleghizadeh, S., On Fractional Sub-equation Method, Nonlinear Sci. Lett. A, 8 (2017), 1, pp.66-76
  8. Rajeev, Singh, A. K., Homotopy Analysis Method for a Fractional Stefan Problem, Nonlinear Sci. Lett. A, 8 (2017), 1, pp.50-59
  9. Zhuang, J. Y., et al., The Method of Separation of Variables for Local Fractional Korteweg-de Vries Equation, Thermal Science, 20 (2016), Suppl.3, pp.859-862
  10. Zhang, W., et al., The Local Fractional Series Expansion Solution for Local Fractional Korteweg-de Vries Equation, Thermal Science, 20 (2016), Suppl.3, pp.863-866
  11. Ye, S. S., et al., The Laplace Series Solution for Local Fractional Korteweg-de Vries Equation, Thermal Science, 20 (2016), Suppl.3, pp.867-870
  12. Li, Z. B., He, J. H., Exact Solutions of Time-fractional Heat Conduction Equation by the Fractional Complex Transform, Thermal Science, 16 (2012), 2, pp. 335-338
  13. Liu, F. J., et al., He's Fractional Derivative for Heat Conduction in a Fractal Medium Arising in Silkworm Cocoon Hierarchy, Thermal Science, 19 (2015),4, pp.1155-1159
  14. Liu, F. J., et al., A Fractional Model for Insulation Clothings with Cocoon-like Porous Structure, Thermal Science, 20 (2016), 3, pp.779-784
  15. He, J. H., Variational Iteration Method-a Kind of Non-linear Analytical Technique: Some Examples, International Journal of Non-Linear Mechanics, 34 (1999), 4, pp.699-708
  16. Wu, G. C., Lee, E. W. M., Fractional Variational Iteration Method and its Application. Physics Letters A ,374 (2010), 25, pp.2506-2509
  17. He, J. H., A Short Remark on Fractional Variational Iteration Method, Physics Letters A, 375 (2011), 38, pp.3362-3364
  18. Yang, X. J., Baleanu, D., Fractal Heat Conduction Problem Solved by Local Fractional Variation Iteration Method , Thermal Science, 2 (2013), 17, pp.625-628
  19. He, J. H., Liu, F. J., Local Fractional Variational Iteration Method for Fractal Heat Transfer in Silk Cocoon Hierarchy, Nonlinear Science Letters A, 4 (2013),1, pp.15-20
  20. Meng, Z. J., et al., Local Fractional Variational Iteration Algorithm III for the Diffusion Model Associated with Non-differential Heat Transfer, Thermal Science, 20 (2016), Supp.3, pp. S781-S784
  21. Lu, J. F., Ma, L., Analytical Approach to a Generalized Hirota-Satsuma Coupled Korteweg-de Vries Equation by Modified Variational Iteration Method, Thermal Science, 20 (2016), 3, pp.885-888
  22. He, J. H., A Tutorial and Heuristic Review on Lagrange Multiplier for Optimal Problems, Nonlinear Science Letters A, 8 (2017), 2, pp. 121-148
  23. Hojat, A., et al., On Mittag-Leffler Function and Beyond, Nonlinear Science Letters A, 8 (2017), 2, pp.187-199

© 2024 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence