International Scientific Journal


The reactants are generally injected into the industrial furnaces by jets. An effective method to act on combustion in such systems is to control the way injection jets. The present study concerns the control of an air-flow generated through a coaxial burner. The effects of passive control on a turbulent flow were investigated experimentally. The principal idea consists in adding small obstacles on the outlet side of the burner’s annular jet with an aim of increasing the turbulence intensity in the vicinity close to the edge of injection and of having an act on the central flow. The objective of this study consists to study of a swirling flow in a circular pipe and conceiving of a control system significantly improving the mixture on a non-reactive flow in order to apply it to a reactive situation. The various profiles speed for various values of the air-flow injected into the annular tube will be presented in order to propose the effectiveness of our inspecting device in terms of improvement of the mixture between the two jets as well as the mixture with the ambient air. The particle image velocimetry technique has been used to characterize the dynamic field. Results show that the control by adding small obstacles has a considerable effect on the dynamic behavior.
PAPER REVISED: 2016-04-14
PAPER ACCEPTED: 2016-04-15
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2017, VOLUME 21, ISSUE Issue 6, PAGES [2543 - 2552]
  1. M. A. Mergheni, T. Boushaki, J.-C. Sautet, G. Godard, H. Ben Ticha, S. Ben Nasrallah, Effects of different mean velocity ratios on dynamics characteristics of a coaxial jet, Thermal Science, Vol. 12, No. 2, pp. 49-58, 2008.
  2. N.W.M. KO, Kwan A.S.H., The initial region of subsonic coaxial jets, Journal Fluid Mechanics, 73, 305-332, 1996.
  3. Ko N.W.M., Au H., Initial region of subsonic coaxial jets of high mean velocity ratio, Trans ASME, Journal Fluids Enginering, 103, 335-338, 1981.
  4. F. Cozzi, A. Coghe, effect of air staging on a coaxial swirled naturel gas flamme, Experimental Thermal Science, 43, 32-39, 2012.
  5. G. N. Li, H. Zhou, K. F. Cen, Emission characteristics and combustion instabilities in an oxy-fuel swirl stabilized combustor, Zhejiang University Science, A9, 1582-1589, 2008.
  6. H. Y. Kim, S.W. Baek, C. Y.. Lee, effects of hybrid reburning system with SNCR and air staging on NOx reduction and termal characteristics in oxygen-enhanced combustion, Combustion Science Technology, 181, 1289-1309, 2012.
  7. Beér, J. M.; Chigier, N. A. Combustion Aerodynamics, Applied Science Publishers, Ltd : London, U. K. 1972, p 264.
  8. B. Presenti, caractérisation numérique et expérimentale d'un brûleur à gaz à Swirl variable : longueur de flamme, transferts thermiques et production de NOx, thèse de la faculté de polytechnique de Mons, 2006.
  9. J. Adjovi, E. Foucault, Stabilité des jets annulaires tournants, Congrès Francophone de Techniques Laser, Toulouse, 19-22 septembre 2006.
  10. B. Leclaire, Etude théorique et expérimentale d'un écoulement tournant dans une conduite, thèse de doctorat de l'école polytechnique, 21 Décembre 2006.
  11. V. FAIVRE, Etude expérimentale et numérique du contrôle actif de jets dans des chambres de combustion, Thèse Doctorat de l'Institut National Polytechnique de Toulouse, 15 Décembre 2003
  12. T. Boushaki, M.A. Mergheni, J.C. Sautet, B. Labegorre, Effects of inclined jets on turbulent oxy-flame characteristics in a triple jet burner, Experimental Thermal and Fluid Science 32, 1363-1370, 2008.
  13. N. Merlo, T. Boushaki, C. chauveau, S. Persis, B. Sarh, I. Gokalp, Combustion charateristics of methaneoxygen enhanced air turbulent non-premixed swirling flames, Experimental thermal and fluid science, 56, 53-60, 2014.
  14. N. Merlo, T. Boushaki, C. chauveau, S. Persis, B. Sarh, I. Gokalp, Experimental study of oxygen enrichment effects on turbulent non-premixed swirling flames, energy and fuels, 27, 6191-6197, 2013.
  15. H. S. Kim, V. K. Arghode, A. K. Gupta, Flame characteristics of hydrogen-enriched methane-air premixed swirling flames, International journal of hydrogen energy, 34, 1063-1073-2009.
  16. BSA Flow Software V. 2.1 Dantec, Installation & User's guide.

© 2022 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence