THERMAL SCIENCE
International Scientific Journal
THE ADOMIAN DECOMPOSITION METHOD AND THE FRACTIONAL COMPLEX TRANSFORM FOR FRACTIONAL BRATU-TYPE EQUATION
ABSTRACT
In this paper, the Adomian decomposition method and the fractional complex transform are adopted to solve a fractional Bratu-type equations based on He's fractional derivative. The solution process is elucidated and analytical results can be directly used in practical applications.
KEYWORDS
PAPER SUBMITTED: 2016-08-05
PAPER REVISED: 2016-08-23
PAPER ACCEPTED: 2016-10-25
PUBLISHED ONLINE: 2017-09-09
THERMAL SCIENCE YEAR
2017, VOLUME
21, ISSUE
Issue 4, PAGES [1713 - 1717]
- He, J.-H., et al., Variational Iteration Method for Bratu-Like Equation Arising in Electrospinning, Car-bohydrate Polymers, 105 (2013), May, pp. 229-230
- He, J.-H., Liu, H. M., Variational Approach to Nonlinear Problems and a Review on Mathematical Model of Electrospinning, Nonlinear Analysis-Theory Methods & Applications, 63 (2005), 5-7, pp. 919-929
- Wan, Y. Q., et al., Thermo-Electro-Hydrodynamic Model for Electrospinning Process, Int. J. Nonlinear Sci. Numer., 5 (2004), 1, pp. 5-8
- Liu, H. Y., Wang, P., A Short Remark on WAN Model for Electrospinning and Bubble Electrospinning and Its Development, Int. J. Nonlinear Sci. Numer., 16 (2015), 1, pp. 1-2
- Colantoni, A., Boubaker, K., Electro-Spun Organic Nanofibers Elaboration Process Investigations Using Comparative Analytical Solutions, Carbohydrate Polymers, 101 (2014), Jan., pp. 307-312
- Podlubny, I., Fractional Differential Equations, Academic Press, New York, USA, 1999
- Hilfer, R., Application of Fractional Calculus in Physics, World Scientific, Singapore, 2000
- Hu, Y., He, J.-H., On Fractal Space-Time and Fractional Calculus, Thermal Science, 20 (2016), 3, pp. 773-777
- Wang, K. J., Pan, Z. L, An Analytical Model for Steady-State and Transient Temperature Fields in 3-D Integrated Circuits, IEEE Trans. Compon., Packag., Manuf. Technol., 6 (2016), 7, pp. 1028-1041
- Wang, K. J., et al., Integrated Microchannel Cooling in a Three Dimensional Integrated Circuit: A Thermal Management, Thermal Science, 20 (2016), 3, pp. 899-902
- He, J.-H., Homotopy Perturbation Technique, Computer Methods in Applied Mechanics and Engineer-ing, 178 (1999), 3, pp. 257-262
- He, J.-H., A Coupling Method of a Homotopy Technique and a Perturbation Technique for Nonlinear Problems, International Journal of Nonlinear Mechanics, 35 (2000), 1, pp. 37-43
- He, J.-H., Application of Homotopy Perturbation Method to Nonlinear Wave Equation, Chaos, Solitons & Fractals, 26 (2005), 3, pp. 695-700
- Rajeev., Homotopy Perturbation Method for a Stefan Problem with Variable Latent Heat, Thermal Sci-ence, 18 (2014), 2, pp. 391-398
- He, J.-H., A Short Remark on Fractional Variational Iteration Method, Phys. Lett. A 375 (2011), 38, pp. 3362-3364
- He, J.-H., Variational Iteration Method - Some Recent Results and New Interpretations, J. Comput. Appl. Math., 207 (2007), 1, pp. 3-17
- He, J.-H., Exp-Function Method for Fractional Differential Equations, International Journal of Nonline-ar Sciences and Numerical Simulations, 14 (2013), 6, pp. 363-366
- Ma, H. C., et al., Exact Solutions of Nonlinear Fractional Partial Differential Equations by Fractional Sub-Equation Method, Thermal Science, 19 (2015), 4, pp. 1239-1244
- Wazwaz, A. M., A Reliable Modification of Adomian Decomposition Method, Appl. Math. Comput., 102 (1999), 1, pp. 77-86
- Adomian, G., A Review of the Decomposition Method in Applied Mathematics, J. Math. Anal. Appl., 135 (1988), 2, pp. 501-504
- He, J.-H., Li, Z. B., Converting Fractional Differential Equations into Partial Differential Equations, Thermal Science, 16 (2012), 2, pp. 331-334
- Li, Z., He, J.-H., Fractional Complex Transform for Fractional Differential Equations, Math. Comput. Appl., 15 (2010), 5, pp. 970-973
- Wazwaz, A. M., Adomian Decomposition Method for a Reliable Treatment of the Bratu-Type Equa-tions, Appl. Math. Comput., 166 (2005), 3, pp. 652-663
- He, J.-H., et al., A New Fractional Derivative and Its Application to Explanation of Polar Bear Hairs, Journal of King Saud University Science, 28 (2015), 2, pp. 190-192
- He, J.-H., A Tutorial Review on Fractal Spacetime and Fractional Calculus, Int. J. Theor. Phys., 53 (2014), 11, pp. 3698-3718