THERMAL SCIENCE
International Scientific Journal
DYNAMICAL ANALYSIS OF LUMP SOLUTION FOR THE (2+1)-DIMENSIONAL ITO EQUATION
ABSTRACT
Exact kinky breather-wave solution, periodic breather-wave solution and some lump solutions to the (2+1)-dimensional Ito equation are obtained by using an extended homoclinic test technique and Hirota bilinear method with a perturbation parameter uo. Furthermore, a new nonlinear phenomenon in the lump solution, is investigated and discussed. These interesting nonlinear phenomena might provide us with useful information on the dynamics of higher-dimensional nonlinear wave field.
KEYWORDS
PAPER SUBMITTED: 2016-08-12
PAPER REVISED: 2016-10-15
PAPER ACCEPTED: 2016-11-25
PUBLISHED ONLINE: 2017-06-04
THERMAL SCIENCE YEAR
2017, VOLUME
21, ISSUE
Issue 4, PAGES [1673 - 1679]
- Ma, H. C., et al., Lump Solution of (2+1)-Dimensional Boussinesq Equation. Communications in Theoretical Physics, 65(2016), 5, pp.546-552
- Tian,Y.: Exact solution for a class of volterral integral-differential equations arising in viscoelastic fluid. Thermal Science, 20 (2016), 3, pp.807-812
- Wang C., Spatiotemporal deformation of lump solution to (2+1)-dimensional KdV equation. Non-linear Dynamics, 84 (2015), 2,pp.697-702
- Tan W., Dai.Z. D.: Dynamics of kinky wave for (3+1)-dimensional potential Yu-Toda-Sasa-Fukuyama equation. Nonlinear Dynamics, 85 (2016), 2, pp. 817-823
- Ma W. X.: Lump solutions to the Kadomtsev-Petviashvili equation. Physics Letters A, 379(2015), 36,pp.197-1978
- He, J.-H., Li, Z.B., Converting fractional differential equations into partial differential equations, Thermal Science, 16 (2012), 2, pp. 331-334
- Ito M., An extension of nonlinear evolution equations of the KdV (mKdV) type to higher order. J. Phys. Soc. Jpn. 49 (1980), 2, pp.771-778
- Wazwaz A.M., Multiple-soliton solutions for the generalized (1+1)-dimensional and the generalized (2 +1)-dimensional Ito equations, Appl. Math. Comput. 202 (2008) , 2, pp. 840-849
- Ebadi G., et al., Solitons and conserved quantities of the ito equation. Proceedings of the Romanian Academy, 13 (2012),3, pp.215-224
- Li D. L., Zhao J. X., New exact solutions to the (2 + 1)-dimensional Ito equation: Extended homoclinic test technique. Applied Mathematics & Computation, 215 (2009), 5, pp.1968-1974
- Zhao Z., Dai Z., Wang C., Extend three-wave method for the (1+2)-dimensional Ito equation. Applied Mathematics & Computation, 217 (2010), 5, pp.2295-2300
- Tian Y.H., et al., Rogue Waves and New Multi-wave Solutions of the (2+1)-Dimensional Ito Equation : Zeitschrift für Naturforschung A. 70(2015),6. pp.437-443
- Liu J., Liu X., et al., Linear Stability Analysis and Homoclinic Orbit for a Generalized Nonlinear Heat Transfer, Thermal Science, 16 (2012), 5, pp. 1656-1659
- Luo H. Y., Tan W, Dai Z. D., Liu J.: Kink degeneracy and rogue wave for potential Kadomtsev- Petviashvili equation. Thermal Science, 19 (2015), 4, pp. 1429-1435.
- Dai Z, Liu J, Zeng X, et al. Periodic kink-wave and kinky periodic-wave solutions for the Jimbo- Miwa equation. Physics Letters A, 372 (2008), 38, pp.5984-5986