THERMAL SCIENCE
International Scientific Journal
MATHEMATICAL MODELS FOR THERMAL SCIENCE
ABSTRACT
PAPER SUBMITTED: 2016-12-12
PAPER REVISED: 2016-12-12
PAPER ACCEPTED: 2017-03-22
PUBLISHED ONLINE: 2017-04-08
THERMAL SCIENCE YEAR
2017, VOLUME
21, ISSUE
Issue 4, PAGES [1563 - 1566]
- El Naschie, M. S., A Review of E Infinity Theory and the Mass Spectrum of High Energy Particle Phys-ics, Chaos Solitons & Fractals, 19 (2014), 1, pp. 209-236
- Fan, J., He, J.-H., Biomimic Design of Multi-Scale Fabric with Efficient Heat Transfer Property, Ther-mal Science, 16 (2012), 5, pp. 1349-1352
- Wang, Q. L., et al., Fractal Analysis of Polar Bear Hairs, Thermal Science, 19 (2015), Suppl. 1, pp. S143-S-144
- Liu, F. J., et al., He’s Fractional Derivative for Heat Conduction in a Fractal Medium Arising in Silk-worm Cocoon Hierarchy, Thermal Science, 19 (2015), 4, pp. 1155-1159
- Liu, P., et al., Facile Preparation of Alpha-Fe2O3 Nanobulk via Bubble Electrospinning and Thermal Treatment, Thermal Science, 20 (2016), 3, pp. 967-972
- Ren, Z. F, et al. Effect of Bubble Size on Nanofiber Diameter in Bubble Electrospinning, Thermal Sci-ence, 20 (2016), 3, pp. 845-848
- He, C. H., et al., Bubbfil Spinning for Fabrication of PVA Nanofibers, Thermal Science, 19 (2015), 2, pp. 743-746
- Li, Y., et al. Bubbfil Electrospinning of PA66/Cu Nanofibers, Thermal Science, 20 (2016), 3, pp. 993-998
- He, J.-H., A Tutorial Review on Fractal Spacetime and Fractional Calculus, International Journal of Theoretical Physics, 53 (2014), 11, pp. 3698-3718
- Hu, Y., He, J.-H., Fractal Space-Time and Fractional Calculus, Thermal Science, 20 (2016), 3, pp. 773-777
- Wang, K. L., Liu, S. Y., He’s Fractional Derivative for Non-Linear Fractional Heat Transfer Equation, Thermal Science, 20 (2016), 3, pp. 793-796
- Wang, K. L., Liu, S. Y., A New Solution Procedure for Nonlinear Fractional Porous Media Equation Based on a New Fractional Derivative, Nonlinear Science Letters A, 7 (2016), 4, pp. 135-140
- Liu, F. J., et al., A Fractional Model for Insulation Clothing with Cocoon-Like Porous Structure, Ther-mal Science, 20 (2016), 3, pp. 779-784
- Zhu, W. H., et al., An Analysis of Heat Conduction in Polar Bear Hairs Using One-Dimensional Frac-tional Model, Thermal Science, 20 (2016), 3, pp. 785-788
- Sayevand, K., Pichaghchi, K., Analysis of Nonlinear Fractional KdV Equation Based on He's Fractional Derivative, Nonlinear Sci. Lett. A, 7 (2016), 3, pp. 77-85
- Cui, Q. N., et al. Analytical and Numerical Methods for Thermal Science, Thermal Science, 20 (2016), 3, pp. IX-XIV
- He, J.-H., Li, Z. B., Converting Fractional Differential Equations into Partial Differential Equations, Thermal Science, 16 (2012), 2, pp. 331-334
- Li, Z. B., et al., Exact Solutions of Time-Fractional Heat Conduction Equation by the Fractional Com-plex Transform, Thermal Science, 16 (2012), 2, pp. 335-338
- Wang, Y. et al., An Explanation of Local Fractional Variational Iteration Method and Its Application to Local Fractional mKdV Equation, Thermal Science, https://doi.org/10.2298/TSCI160501143W