THERMAL SCIENCE

International Scientific Journal

Authors of this Paper

External Links

THERMOMAGNETIC CONVECTION OF A MAGNETIC NANOFLUID INFLUENCED BY A MAGNETIC FIELD

ABSTRACT
We present a numerical study of thermomagnetic convection in a differentially heated cavity. The magnetic nanofluid (ferrofluid) is subjected to a uniform magnetic gradient oriented at an angle, φ, with respect to the thermal gradient. The motivation for this work stems largely from a desire to extent preexisting works focused on horizontal and vertical orientations φ = 0°, 90°, 180°, and 270°. Our main goal is to get data on the flow and heat transfer for any orientation in the entire range 0-360°. The generalized problem lends itself to the investigation of orientations that give maximum heat transfer. It is found that, (1) at a given magneto- gravitational coupling number, N, orientations 0°, 90°, and 270°, for which magnetization gradient is unstable, are not the optimum ones, (2) for 0 < N ≤ 1, heat transfer reaches a maximum between 270° and 360°, (3) for N > 1, a second maximum occur between 0° and 90° owing to reverse flow phenomenon, (4) at strong magnetic gradients, the two heat transfer peaks take the same value, and (5) optimization parameter, ω, reflecting the strongest magnetic effect, grows with N. Unlike the gravity, magnetic gradient may supply various strengths and spatial configurations, which makes thermomagnetic convection more controllable. Also, the magnetic mechanism is a viable alternative for the gravity one in microgravity, where thermo-gravitational convection ceases to be efficient..
KEYWORDS
PAPER SUBMITTED: 2014-11-28
PAPER REVISED: 2015-07-31
PAPER ACCEPTED: 2015-09-04
PUBLISHED ONLINE: 2015-11-15
DOI REFERENCE: https://doi.org/10.2298/TSCI141128155B
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2017, VOLUME 21, ISSUE Issue 3, PAGES [1261 - 1274]
REFERENCES
  1. Papell, S.S., Low Viscosity Magnetic Fluid obtained by the Colloidal Suspension of Magnetic Particles, U.S. patent 3215572, 1965
  2. Berger, P., et al., Preparation and Properties of an Aqueous Ferrofluid, J. Chem. Educ., 76 (1999), 7, pp. 943-948
  3. Vekas, L., Magnetic Nanofluids Properties and Some Applications, Rom. J. Phys., 49 (2004), 9-10, pp. 707-721
  4. Raj, K., Moskowitz, B., Commercial Applications of Ferrofluids, J. Magn. Magn. Mater., 85 (1990), pp. 233-245
  5. Tangthieng , C. , et al., Heat Transfer Enhancement in Ferrofluids Subjected to Steady Magnetic Fields, J. Magn. Magn. Mater., 201 (1999), pp. 252-255
  6. Mukhopadhyay, A., et al., A Scaling Analysis to Characterize Thermomagnetic Convection, Int. J. Heat Mass Transfer, 48 (2005), pp. 3485-3492
  7. Finlayson, B.A., Convective Instability of Ferromagnetic Fluids, J. Fluid Mech., 40 (1970), 4, pp. 753-757
  8. Schwab, L., et al., Magnetic Bénard Convection, J. Magn. Magn. Mater., 39 (1983), pp. 113-114
  9. Stiles, P.J., Kagan, M., Thermoconvective Instability of a Horizontal Layer of Ferrofuid in a Strong Magnetic Field, J. Magn. Magn. Mater., 85 (1990), pp.196-198
  10. Rudraiah, N., Sekhar, G.N., Convection in Magnetic Fluids with Internal Heat Source, ASME. J. Heat Transfer, 113 (1991), pp. 122-127
  11. Recktenwald, A., Lücke, M., Thermoconvection in Magnetized Ferrofluids: the Influence of Boundaries with Finite Heat Conductivity, J. Magn. Magn. Mater., 188 (1998), pp. 326-332
  12. Shliomis, M.I., Smorodin, B.I. , Convection Instability of Magnetized Ferrofluids, J. Magn. Magn. Mater., 252 (2002), 1-3, pp. 197-202
  13. Bozhko, A.A., Putin, G.F., Magnetic Action on Convection and Heat Transfer in Ferrofluid, Indian. J. Eng. Mater. Sci., 11 (2004), pp.309-314
  14. Odenbach, S., Völker, T., Thermal Convection in a Ferrofluid Supported by Therrmodiffusion, J. Magn. Magn. Mater., 289 (2005), pp.122-125
  15. Nanjundappa, C.E., Effect of MFD Viscosity on the Onset of Ferromagnetic Fluid Layer Heated from Below and Cooled from Above with Constant Heat Flux, Measurm. Sci. Rev., 9 (2009), 3, pp.75-80
  16. Aggarwal, A.K., Makhija, S., Hall Effect on Thermal Stability of Ferromagnetic Fluid in Porous Medium in the Presence of Horizontal Magnetic Field, Therm. Sci., 18 (Supp.2) (2014), pp. S503-S514
  17. Yamaguchi, H., et al., Natural Convection in a Rectangular Box, J. Magn. Magn. Mater., 201 (1999), 1-3, pp.264-267
  18. Krakov, M.S., Nikiforov, I.V., To the Influence of Uniform Magnetic Field on Thermomagnetic Convection in Square Cavity, J. Magn. Magn. Mater., 252 (2002), 1-3, pp. 209-221
  19. Krakov, M.S. et al., Three-dimensional Thermomagnetic Convection in a Cubic Cavity in the Presence of an External Uniform Magnetic Field, Magnetohydrodynamics, 40 (2004), 3, pp. 285-296
  20. Wen, C.Y., et al., Flow Visualization of Natural Convection of Magnetic Fluid in a Rectangular Hele-Shaw Cell, J. Magn. Magn. Mater., 252 (2002), 1-3, pp. 206-208
  21. Wen, C.Y. , Su, W.P., Natural Convection of Magnetic Fluid in a Rectangular Hele-Shaw cell, J. Magn. Magn. Mater., 289 (2005), pp. 299-302
  22. Krakov , M.S., et al., Influence of the Uniform Magnetic Field on Natural Convection in Cubic Enclosure: Experiment and Numerical Simulation, J. Magn. Magn. Mater., 289 (2005), pp. 272-274
  23. Yamaguchi, H., et al., Thermomagnetic Natural Convection of Thermo-Sensitive Magnetic Fluids in Cubic Cavity with Heat Generating Object inside, J. Magn. Magn. Mater., 322 (2010), pp. 698-704
  24. Berkovsky, B.M. et al., Heat Transfer across Vertical Ferrofluid Layers, Int. J. Heat Mass Transfer, 19 (1976), pp. 981-986
  25. Kikura, H., et al., Natural Convection of a Magnetic Fluid in a Cubic Enclosure, J.Magn.Magn.Mater., 122 (1993), pp.315- 318
  26. Sawada, T., et al., Visualization of Wall Temperature Distribution caused by Natural Convection of Magnetic Fluids in a Cubic Enclosure, Int. J. Appl. Electromagn.Mater., 4 (1994), pp. 329-335
  27. Bouhrour, A., Kalache, D., Natural Convection in a Ferroliquid, Book of abstracts, 9th International Conference on Magnetic Fluids, Bremen, Germany, 2001
  28. Snyder, S. M., et al., Finite Element Model of Magnetoconvection of a Ferrofluid, J. Magn. Magn. Mater., 262 (2003), pp. 269-279
  29. Ganguly, R., et al., Thermomagnetic Convection in a Square Enclosure using a Line Dipole, Phys. Fluids, 16 (2004), 7, pp. 2228-2236
  30. Jue, T.C., Analysis of Combined Thermal and Magnetic Convection Ferrofluid Flow in a Cavity, Int. Commun. Heat and Mass Transfer, 33 (2006), pp. 846-852
  31. Zablockis, D., et al., Numerical Investigation of Thermomagnetic Convection in Heated Cylindrical under the Magnetic Field of a Solenoid, J. Phys. Condens. Matter., 20 (2008), pp. 301-308
  32. Contijo, R.G., Cunha, F.R., Experimental Investigation of Thermomagnetic Convection inside Cavities, J. Nanosci. Nanotec., 12 (2012), 12, pp. 9198-9207
  33. Neuringer, J.L., Rosenweig, R.E., Ferrohydrodynamics, Phys. Fluids, 7 (1964), 12, pp. 1927-1937
  34. Rosenweig, R.E., et al., Viscosity of Magnetic Fluid in a Magnetic Field, J. Colloid. Interf. Sci., 29 (1969), 4, pp. 680-686
  35. Rosenweig, R.E., Magnetic Fluids, in: Ferrohydrodynamics, Cambridge University Press, 1985, pp. 33-73
  36. Bashtovoi, V.G., et al., Thermomechanics Equations for Magnetic Fluids7 of Equilibrium Magnetization, in: Introduction to Thermomechanics of Magnetic Fluids, Berkovsky (Ed.), NY, 1988, pp. 17-42
  37. Parekh, K., et al., Magnetocaloric Effect in Temperature Sensitive Magnetic Fluids, Bul.Mater.Sci., 23 (2000), pp.91-95
  38. Li, Q., et al., Investigation on Operational Characteristics of Miniature Automatic Cooling Device, Int. J. Heat Mass Transfer, 51 (2008), pp. 5033-5038
  39. Sustov, A.S., Thermomagnetic Convection in a Vertical Layer of Ferromagnetic Fluid, Phys. Fluids, 20 (2008), pp.1-18
  40. Engler, H., et al., Hindrance of Thermomagnetic Convection by the Magnetoviscous Effect, Int. J. Heat Mass Transfer, 60 (2013), pp. 499-504
  41. Jordan, P.C., Association Phenomena in a Ferromagnetic Colloid, Molecular Physics, 25 (1973), 4, pp. 961-973
  42. Shliomis, M.I., Raikher, Y.L., Experimental Investigation on Magnetic Fluids, IEEE Transactions on Magnetics, 16 (1980), 2, pp. 237-250.
  43. McTague, J.P., Magnetoviscous Effect in Magnetic Colloids, J. Chem. Physics, 51 (1969), pp.133-136
  44. Hamedani, H.M., Davis, L.R., An experimental Investigation of the Properties of Magnetic Fluid in Thermal Rejection Applications, Proceeding of Intersociety Energy Conversion Engineering Conference, New York, 1988, pp.359-364
  45. Li, Q., et al., Experimental Investigation on Transport Properties of Magnetic Fluids, Exp. Ther. Fluids. Sci., 30 (2002), pp.109-116
  46. De Risi, A., et al., High Efficiency Nanofluid Cooling System for Wind Turbines, Therm. Sci., 18 (2014), 2, pp.543-554
  47. Kronkains, G., Measurement of Thermal and Electrical Conductivities of a Ferrifluid in a Magnetic Field, Magnitnaya Gidrodinamica, 3 (1977), pp. 138-140
  48. Philip, J., et al., Evidence of Enhanced Thermal Conductivity through Percolating Structures in Nanofluids, Nanotechnology, 19 (2008), 305706
  49. Nukirikiyimfura, I., et al., Effect of Chain-like Magnetite Nanoparticle Aggregates on Thermal Conductivity of Magnetic Nanofluid in Magnetic Field, Exp. Therm. Fluid Sci., 44 (2013), pp. 607-612,
  50. Fu, H.L., Gao, L., Theory for Anisotropic Thermal Conductivity of Magnetic Nanofluids, Phys. Letters A, 375 (2011), pp. 3588-3592
  51. Krichler, M., Odenbach, S., Thermal Conductivity Measurements on Ferrofluids with Special Reference to Measuring Arrangement, J. Magn. Magn. Mater., 326 (2013), pp. 85-90.
  52. Blums, E., Heat and Mass Transfer phenomena, J. Magn. Magn. Mater., 252 (2002), 1-3, pp.189-193
  53. Bahiraei, M., Hangi, M., Flow and Heat Transfer Characteristics of a Magnetic Nanofluids: A review, J. Magn. Magn. Mater., 374 (2015), pp. 125-138
  54. Patankar, S.V., Numerical Heat Transfer and Fluid Flow, Hemisphere, Washington D.C. USA, 1980
  55. Davis, G. D.V., Natural Convection of Air in Square Cavity a Benchmark Numerical Solution, Int. J. Num. Methods Fluids, 3 (1983), pp. 249-269
  56. Odenbach, S., Microgravity Experiments on Thermomagnetic Convection in Magnetic Fluid, J. Magn. Magn. Mater., 149 (1995), pp. 55-157
  57. Lankhorst, A.M., Laminar and Turbulent Natural Convection in Cavities. Numerical Modeling and Experimental Validation, Ph.D. Thesis, Technical University, Delt, 1991
  58. Sawada, T., et al., Natural Convection of a Magnetic Fluid in Concentric Horizontal Annuli in Non uniform Magnetic Fields, Exp. Therm. Fluid. Sci., 7 (1993), pp.212-220
  59. Chase, M.W. Jr. et al., JANAF Thermochemical Tables, J. Phys. Chem. Ref. Data, 14 (1985), p.1203
  60. Kamiyama, S., et al., On the Flow of a Ferromagnetic Fluid in a Circular Pipe, Bull. JSME, 22 (1979), pp.1205-1211
  61. Poplewell, J., Al-Quenai, A., Thermal Conductivity Measurements on Ferofluids Containing Cobalt and Iron Particles, J. Magn. Magn. Mater., 65 (1987), pp.215-218
  62. Touloukian, Y.S., et al., Thermophysical Properties of Matter, Plenum Press, New York, 1970, Vol.2, pp.154-156

2025 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence