THERMAL SCIENCE

International Scientific Journal

Authors of this Paper

External Links

STEADY-STATE HEAT CONDUCTION IN A MEDIUM WITH SPATIAL NON-SINGULAR FADING MEMORY: DERIVATION OF CAPUTO-FABRIZIO SPACE-FRACTIONAL DERIVATIVE FROM CATTANEO CONCEPT WITH JEFFREY`S KERNEL AND ANALYTICAL SOLUTIONS

ABSTRACT
Starting from the Cattaneo constitutive relation with a Jeffrey's kernel the derivation of a transient heat diffusion equation with relaxation term expressed through the Caputo-Fabrizio time fractional derivative has been developed. This approach allows seeing the physical back ground of the newly defined Caputo-Fabrizio time fractional derivative and demonstrates how other constitutive equations could be modified with non-singular fading memories.
KEYWORDS
PAPER SUBMITTED: 2016-02-29
PAPER REVISED: 2016-05-04
PAPER ACCEPTED: 2016-05-04
PUBLISHED ONLINE: 2016-05-21
DOI REFERENCE: https://doi.org/10.2298/TSCI160229115H
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2017, VOLUME 21, ISSUE Issue 2, PAGES [827 - 839]
REFERENCES
  1. Caputo, M., Fabrizio, M., A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl. ,1 (2015), 2, pp. 73-85.
  2. Podlubny, I, Fractional Differential Equations, Academic Press, New York, 1999.
  3. Caputo, M., Fabrizio, M., Applications of new time and spatial fractional derivatives with exponential kernels, Progr. Fract. Differ. Appl., 2 (2016), 2, pp. 1-11.
  4. Losada, J., Nieto, J. J., Properties of a New Fractional Derivative without Singular Kernel, Progr. Fract. Differ. Appl. , 1 (2015), 2, pp. 87-92.
  5. Atangana, A.; Badr, S.T.A. Extension of the RLC electrical circuit to fractional derivative without singular kernel. Adv. Mech. Eng. 2015, 7, pp1-6.
  6. Atangana, A., Nieto, J.J., Numerical solution for the model of RLC circuit via the fractional derivative without singular kernel, Advances in Mechanical Engineering, 7 (2015),10, pp.1-7, doi: 10.1177/1687814015613758.
  7. Atangana, A., Badr, S.T.A. Analysis of the Keller-Segel model with a fractional derivative without singular kernel, Entropy, 17(2015),,pp. 4439-4453; doi:10.3390/e17064439
  8. Atangana, A, On the new fractional derivative and application to nonlinear Fisher's reaction-diffusion equation, App. Math. Comp., 273 (2016), pp. 948-956; dpi: 10.1016/j.amc.2015.10.021 .
  9. Alsaedi, A., Baleanu,D. Sina Etemad,S., Shahram Rezapour, S. On Coupled Systems of Time-Fractional Differential Problems by Using a New Fractional Derivative, J. Function Spaces, v. 2016, Article ID 4626940, doi: 10.1155/2016/4626940.
  10. Gómez-Aguilar, J.F. ,Yépez-Martínez. H., Calderón-Ramón, C., Cruz-Orduña, I. Fabricio Escobar-Jiménez, R., Hugo Olivares-Peregrino , V., Modeling of a Mass-Spring-Damper System by Fractional Derivatives with and without a Singular Kernel, Entropy, 17 (2005), pp. 6289-6303; doi:10.3390/e17096289
  11. Atangana, A, Badr, S.T.A., New model of groundwater flowing within a confine aquifer: application of Caputo-Fabrizio derivative, Arabian Journal of Geosciences, January 2016, 9:8, doi: 10.1007/s12517-015-2060-8.
  12. Hristov J., Transient Heat Diffusion with a Non-Singular Fading Memory: From the Cattaneo Constitutive Equation with Jeffrey's kernel to the Caputo-Fabrizio time-fractional derivative, Thermal Science, 20 (2016), 2, pp.xxx-xxx, in press; DOI:10.2298/TSCI160112019H
  13. Cattaneo, C, On the conduction of heat (In Italian), Atti Sem. Mat. Fis. Universit´a Modena, 3 (1948),1, pp. 83-101.
  14. Carillo, S., Some Remarks on Materials with Memory: Heat Conduction and Viscoelasticity, J. Nonlinear Math. Phys., 12 (2005), Suppl. 1, pp. 163-178.
  15. Ferreira, J.A., de Oliveira, P., Qualitative analysis of a delayed non-Fickian model, Applicable Analysis, 87(2008), 8, pp. 873-886.
  16. Araujo, A., Ferreira, J.A., Oliveira, P., The effect of memory terms in diffusion phenomena, J. Comp. Math., 24 (2000), 1, 91-102.
  17. Joseph, D.D., Preciozi, Heat waves, Rev.Mod. Phys., 61 (1989), 1, pp. 41-73
  18. Curtin, M. E, Pipkin, A.C., A general theory of heat conduction with finite wave speeds, Archives of Rational Mathematical Analysis, 31 (1968), 2, pp. 313-332.
  19. Yang, X.J., Srivastava, H.M., Machado, J.A.T. A new fractional derivative without singular kernel: application to the modelling of the steady heat flow, Thermal Science, 2016, in press, doi: 10.2298/TSCI151224222Y

2025 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence