## THERMAL SCIENCE

International Scientific Journal

### ANALYSIS OF FRACTIONAL NON-LINEAR DIFFUSION BEHAVIORS BASED ON ADOMIAN POLYNOMIALS

**ABSTRACT**

A time-fractional non-linear diffusion equation of two orders is considered to investigate strong non-linearity through porous media. An equivalent integral equation is established and Adomian polynomials are adopted to linearize non-linear terms. With the Taylor expansion of fractional order, recurrence formulae are proposed and novel numerical solutions are obtained to depict the diffusion behaviors more accurately. The result shows that the method is suitable for numerical simulation of the fractional diffusion equations of multi-orders.

**KEYWORDS**

PAPER SUBMITTED: 2016-04-16

PAPER REVISED: 2016-05-21

PAPER ACCEPTED: 2016-06-15

PUBLISHED ONLINE: 2016-12-03

**THERMAL SCIENCE** YEAR

**2017**, VOLUME

**21**, ISSUE

**Issue 2**, PAGES [813 - 817]

- Yu, B.M., Analysis of flow in fractal porous media, Applied Mechanics Reviews, 61 (2008), 5 050801
- Chen, W., et al., Anomalous diffusion modeling by fractal and fractional derivatives, Computers & Mathematics with Applications, 59 (2010), 5, pp. 1754-1758
- Ma, Q., Chen, Z.Q., Lattice Boltzmann simulation of multicomponent noncontinuum diffusion in fractal porous structures, Physical Review E, 92 (2015), 1, 013025
- Gmachowski, L., Fractal model of anomalous diffusion, European Biophysics Journal, 44 (2015), 8, pp. 613-621
- Xiao, B.Q., et al., Fractal analysis of gas diffusion in porous nanofibers, Fractals, 23(2015), 1, 1540011
- Zhuan, X., Sun, Z.Z., A box-type scheme for fractional sub-diffusion equation with Neumann boundary conditions, Journal of Computational Physics, 230 (2011), 15, pp. 6061-6074
- Sun, H.G., et al., Finite difference schemes for variable-order time fractional diffusion equation, International Journal of Bifurcation and Chaos, 22 (2012), 4, 1250085
- Chen, S., et al., Finite difference approximations for the fractional Fokker-Planck equation, Applied Mathematical Modelling, 33 (2009), 1, pp. 256-273
- Zhuan, X., Sun, Z.Z., A box-type scheme for fractional sub-diffusion equation with Neumann boundary conditions, Journal of Computational Physics, 230 (2011), 15, pp. 6061-6074
- Wu, G.C., et al., Lattice fractional diffusion equation in terms of a Riesz-Caputo difference, Physica A, 438 (2015), pp. 335-339
- Hristov J., Approximate solutions to time-fractional models by integral balance approach, Chapter 5, In: Fractional Dynamics, C. Cattani, H.M. Srivastava, X.J. Yang, (eds), De Gruyter Open, 2015 , pp.78-109.
- Hristov, J., Transient heat diffusion with a non-singular fading memory from the cattaneo constitutive equation with Jeffrey's kernel to the Caputo-Fabrizio time-fractional derivative, Thermal Science, 20 (2016), 2, pp. 757-762
- Li, C., Zeng, F., Numerical methods for fractional calculus, Chapman and Hall/CRC, Boca Raton, USA, 2015
- Podlubny, I., Fractional differential equations, Academic Press, San Diego, 1999
- Yang, Q., et al., Numerical methods for fractional partial differential equations with Riesz space fractional derivatives, Applied Mathematical Modelling, 34 (2010), 1, pp. 200-218
- Hristov J., Diffusion models with weakly singular kernels in the fading memories: how the integral-balance method can be applied?, Thermal Science, 19 (2015), 3, pp. 947-957
- Duan, J.S., Recurrence triangle for Adomian polynomials, Applied Mathematics and Computation, 216 (2010), 4, pp. 1235-1241
- Duan, J.S., An efficient algorithm for the multivariable Adomian polynomials, Applied Mathematics and Computation, 217 (2010), 6, pp. 2456-2467
- Duan, J.S., Convenient analytic recurrence algorithms for the Adomian polynomials, Applied Mathematics and Computation, 217 (2011), 13, pp. 6337-6348