International Scientific Journal

Authors of this Paper

External Links


In this paper an inverse problem for the space fractional heat conduction equation is investigated. Firstly, we describe the approximate solution of the direct problem. Secondly, for the inverse problem part, we define the functional illustrating the error of approximate solution. To recover the thermal conductivity coefficient we need to minimize this functional. In order to minimize this functional the Real Ant Colony Optimization (RealACO) algorithm is used. In the model we apply the Riemann-Liouville fractional derivative. The paper presents also some examples to illustrate the accuracy and stability of the presented algorithm.
PAPER REVISED: 2016-05-25
PAPER ACCEPTED: 2016-06-25
CITATION EXPORT: view in browser or download as text file
  1. Hetmaniok, E., Słota, D., Zielonka, A., Using the swarm intelligence algorithms in solution of the two-dimensional inverse Stefan problem, Computers & Mathematics with Applications, 69 (2015), 4, pp. 347-361
  2. Hetmaniok, E., Słota, D., Zielonka, A., Experimental verification of approximate solution of the inverse Stefan problem obtained by applying the invasive weed optimization algorithm, Thermal Science, 19 (2015), (suppl. 1), pp. 205-2012
  3. Hetmaniok, E., Słota, D., Zielonka, A., Restoration of the cooling conditions in a three-dimensional continuous casting process using artificial intelligence algorithms, Applied Mathematical Modelling, 39 (2015), 16, pp. 4797-4807
  4. Sabatier, J., Agrawal, O.P., Tenreiro Machado J.A., Advances of Fractional Calculus, Theoretical Developments and Applications in Physics and Engineering, Springer, Dordrecht, 2007
  5. Carpinteri, A., Mainardi, F., Fractal and Fractional Calculus in Continuum Mechanics, Spinger, New York, 1997
  6. Błasik, M., Numerical scheme for one-phase 1D fractional Stefan problem using the similarity variable technique, Journal of Applied Mathematics and Computational Mechanics, 13, (2014), 1, pp. 13-21
  7. Błasik, M., Klimek, M., Numerical solution of the one phase 1D fractionalStefan problem using the front fixing method, Mathematical Methods in the Applied Sciences, 38 (2014), 15, pp. 3214-3228
  8. Obrączka, A., Kowalski, J., Heat Transfer Modeling in Ceramic Materials Using Fractional Order Equations, in: Advances in the Theory and Applications of Non-integer Order Systems, Lecture Notes in Electrical Engineering, 257, (2013), pp 221-229
  9. Hristov, J., An approximate solution to the transient space-fractional diffusion equation: Integral-balance approach, optimization problems and analyzes, Thermal Science (2016) doi:10.2298/TSCI160113075H
  10. Hristov, J., Transient heat diffusion with a non-singular fading memory from the Cattaneo constitutive equation with Jeffrey's kernel to the Caputo-Fabrizio time-fractional derivative, Thermal Science, 20 (2016), 2, pp. 765-770
  11. Tadjeran, Ch., Meerschaert M.M., Scheffler H.P., A second-order accurate numerical approximation for the fractional diffusion equation, Journal of Computational Physics 213 (2006), 1, pp. 205-213
  12. Brociek, R., Implicite finite difference method for time fractional heat equation with mixed boundary conditions, Zeszyty Naukowe Politechniki Śląskiej, Matematyka Stosowana 4 (2014), pp. 73-87
  13. Liu, J. J., Yamamoto M., Yan L.L., On the reconstruction of unknown timedependent boundary sources for time fractional diffusion process by distributing measurement, Inverse Problems 32 (2016), 1, 25pp
  14. Zhang, Z., An undetermined coefficient problem for a fractional diffusion equation, Inverse Problems 32 (2016), 1, 31pp
  15. Brociek, R., Słota, D., Reconstruction of the boundary condition for the heat conduction equation of fractional order, Thermal Science, 19 (2015), (supl. 1), pp. 35-42
  16. Brociek, R., Słota D., Wituła R., Reconstruction of the Thermal Conductivity Coefficient in the Time Fractional Diffusion Equation, in: Advances in Modeling and Control of Non-Integer-Order Systems (Eds. K. J. Latawiec, et. al.), Lecture Notes in Electrical Engineering, 320, (2015), pp. 239-247
  17. Tatar, S., Tinaztepe R., Ulusoy S., Determination of an unknown source term in a space-time fractional diffusion equation, Journal of Fractional Calculus and Applications, 6 (2015), 1, pp. 83-90
  18. Socha, K., Dorigo, M., Ant Colony Optimization for continuous domains, Europan Journal of Operational Research 185 (2008), 3, pp. 1155-1173
  19. Hetmaniok, E., Solution of the two-dimensional inverse problem of the binary alloy solidification by applying the Ant Colony Optimization algorithm, International Communications in Heat and Mass Transfer, 67 (2015), pp. 39-45
  20. Brociek, R., Słota, D., Application of Intelligent Algorithm to Solve the Fractional Heat Conduction Inverse Problem, in: Information and Software Technologies (Eds. G. Dregvaite, et. al.) Communications in Computer and Information Science, 538 (2015), Springer, pp. 356-365
  21. Woźniak M., Połap D., Napoli Ch., Tramontana E., Damasevicius R., Is the colony of ants able to recognize graphic objects? in: Information and Software Technologies (Eds. G. Dregvaite, et. al.) Communications in Computer and Information Science, 538 (2015), Springer, pp. 376-387
  22. Podlubny, I., Fractional Differential Equations, Academic Press, San Diego 1999
  23. Rabsztyn, Sz., Słota D., Wituła R., Gamma and Beta Functions, vol 1 and 2, Wydawnictwo Politechniki Śląskiej, Gliwice 2012 (in Polish)
  24. Meerschaert, M. M., Tadjeran, Ch., Finite difference approximations for fractional advection-dispersion flow equations, Journal of Computational and Applied Mathematics, 172 (2006), 1, pp. 65-77

© 2024 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence