THERMAL SCIENCE
International Scientific Journal
SUBDIFFUSION MODEL WITH TIME-DEPENDENT DIFFUSION COEFFICIENT: INTEGRAL-BALANCE SOLUTION AND ANALYSIS
ABSTRACT
The paper addresses approximate integral-balance approach to a time-fractional diffusion equation of order 0 < μ < 1 with a time-dependent diffusion coefficient of power-law type D(t)=D0tβ where 0 < β < 1. The form of the solution spreading in a semi-infinite medium through an analysis of the second moment of the approximate solution reveals that depending on the sum μ+β the solution can model subdiffusive (μ+β<1), superdiffusive (μ+β>1) or Gaussian (μ+β=1) process of transport. The optimal exponents of the approximate parabolic profiles have been determined by minimization the mean squared error of approximation over the penetration depth.
KEYWORDS
PAPER SUBMITTED: 2016-04-27
PAPER REVISED: 2016-05-30
PAPER ACCEPTED: 2016-06-27
PUBLISHED ONLINE: 2016-10-01
THERMAL SCIENCE YEAR
2017, VOLUME
21, ISSUE
Issue 1, PAGES [69 - 80]
- Nigmatullin, R.R., The realization of the generalized transfer equation in a medium with fractal geometry, Physica Status Solidi (B) Basic Research., 133 (1986), 1, 425-430.
- Bakunin ,O.G., Description of the Anomalous Diffusion of Fast Electrons by a Kinetic Equation with a Fractional Spatial Derivative, Plasma Physics Reports, Vol. 30, No. 4, 2004, pp. 338-342.
- Hilfer, R., Applications of Fractional Calculus in Physics, World Scientific, 2000, Hackensack, NJ,USA.
- Yang, X.J, Baleanu,D., Srivastava, H.M., Local Fractional Integral Transforms and Their Applications, Academic Press, 2015, London, UK.
- Luchko, Yu, Srivastava,H.M., The exact solution of certain differential equations of fractional order by using operational calculus, Comp. Math. Appl., 29 (1995),8, 73-85.
- Nakagawa, J. ,Sakamoto,K.,Yamamoto, M., Overview to mathematical analysis for fractional diffusion equations-new mathematical aspects motivated by industrial collaboration, J. Math-for-Indust., 2(2010A-10) 99-108
- Das, S., Gupta, P.K., Ghosh, P., An approximate analytical solution of Nonlinear Fractional Diffusion Equation, Appl. Math.Model.,35 (2011) , 8, 4071-4076.
- Wu, GC: Variational iteration method for solving the time-fractional diffusion equations in porous medium . Chin. Phys. B. , 21, (2012a) , 22, Article ID 120504 ; DOI: 10.1088/1674-1056/21/12/120504
- G.-C. Wu, D. Applications of the Variational Iteration Method to Fractional Diffusion Equations: Local versus Nonlocal Ones, Int. Rev. Chem.Eng., 4(2012b),5,505-510.
- G.-C. Wu, D.Baleanu, Variational iteration method for fractional calculus - a universal approach by Laplace transform, Advances in Difference Equations, 2013,2013:18; doi:10.1186/1687-1847-2013-18
- El-Kady, M., El-Sayed, S.M., Salem, H.S., El-Gendi nodal Galerkin method for solving linear and nonlinear partial \fractional space equations, Int. J. Latest Res. Sci. Technol. , 2(2013),6,pp. 10-17.
- Saadatmandi, A., Deghan, M., A tau approach for solution of the space fractional diffusion equation, Comp. Math. Appl., 62 (2011), 3, pp.1135-1142.
- Nie, N., Huang, J., Wang, W., tTang, Y., Solving spatial-fractional partial differential diffusion equations by spectral method., J. Stat. Comp. Sim. , 84 (2014),6,pp.1173-1189.
- Ray, S.S, Analytical solution for the space fractional diffusion equation by two-step Adomian decomposition method, Comp.Nonlinear Sci. Num. Simul., 14 92009), 4, pp. 1295-1306.
- Huang, F., Liu, The space-time fractional diffusion equation with Caputo derivatives, J.Appl. Math & Computing, 19 (2005), 1-2, pp. 179-190.
- Huang, F., Liu, The fundamental solution of the space-time fractional advection-diffusion equation, 19 (2005), 1-2, pp. 339-350.
- Meerschaert MM, Tadjeran C. Finite difference approximations for two-sided space-fractional partial differential equations. Appl Numer Math. ,56 (2006),1,pp.80-90.
- Ervin,V.J., Heur, N., Roop, J., Numerical approximation of a time dependent, nonlinear , spacefractional diffusion equation, SIAM J. Num Anal. , 45 (2008),2, pp.572-591.
- Das, S., A note on fractional diffusion equation, Chaos, Solitons and Fractals, 42 (2009), 4, 2074-2079.
- Podlubny, I, Fractional Differential Equations, Academic Press, New York, 1999
- Fa, K.S., Lenzi, E.K. , Time-fractional diffusion equation with time dependent diffusion coefficient, Physica A, 72 (2005) , article 011107 . dOI:dx.doi.org/10.1103/PhysRevE.72.011107.
- Goodman, T.R., Application of Integral Methods to Transient Nonlinear Heat Transfer, In: T. F. Irvine and J. P. Hartnett (Eds.), Advances in Heat Transfer, 1 (1964), Academic Press, San Diego, CA, pp. 51-122.
- J.Hristov, The heat-balance integral method by a parabolic profile with unspecified exponent: Analysis and benchmark exercises. Therm. Sci., 13 (2009) ,2, 22-48.
- Hristov,J., Approximate solutions to time-fractional models by integral balance approach, In: C. Cattani, H.M. Srivastava, Xia-Jun Yang (Eds.), Fractals and Fractional Dynamics, De Gruyter Open, Berlin, 2015, pp.78-109.
- Hristov J., Double Integral-Balance Method to the Fractional Subdiffusion Equation: Approximate solutions, optimization problems to be resolved and numerical simulations, J. Vibration and Control, in press, DOI: 10.1177/1077546315622773
- Hristov J., An approximate solution to the transient space-fractional diffusion equation: integral-balance approach, optimization problems and analyzes , Thermal Science, , 2016, in press. : DOI:10.2298/TSCI160113075H
- Hristov J., Transient space-fractional diffusion with a power-law superdiffusivity: Approximate integral-balance approach, Fundamenta Informaticae, (2016) , in press
- Volkov, V.N., Li-Orlov, V.K., A Refinement of the Integral Method in Solving the Heat Conduction Equation, Heat Transfer Sov. Res., 2 (1970) 41-47.
- Sadoun, N, Si-Ahmed, E.K., Colinet,P., On the refined integral method for one-phase Stefan problem with time-dependent boundary conditions, Appl. Math. Model., 30 (2006) 531-544.
- Fa, K.S., Lenzi, E.K. ,Anomalous diffusion, solutions, and the first passage time: Influence of diffusion coefficient, Physical Review E, 71 (2005) article 012101, doi: 10.1103/PhysRevE.71.012101
- Fa, K.S., Lenzi, E.K. , Power law diffusion coefficient and anomalous diffusion: Analysis of solutions and the first passage time. Physical Review E, 67 (2003) article 061105, doi: 10.1103/PhysRevE.67.061105
- Yuste, S.B., Lindenberg, K., Comments on first passage time for anomalous diffusion, Physical Review E, 69 (2004), article 033101, doi: 10.1103/PhysRevE.69.033101
- Langford , D., The heat balance integral method, Int. J. Heat Mass Transfer, 16 (1973), 12, pp.2424-2428.
- Hristov J., Integral solutions to transient nonlinear heat (mass) diffusion with a power-law diffusivity: a semi-infinite medium with fixed boundary conditions, Heat Mass Transfer, 52 (2016), 3, pp.635-655.
- Fabre, A., Jordan Hristov,J., On the integral-balance approach to the transient heat conduction with linearly temperature-dependent thermal diffusivity, Heat Mass Transfer, 2016, in press , DOI: 10.1007/s00231-016-1806-5