THERMAL SCIENCE
International Scientific Journal
AN APPROXIMATE SOLUTION TO THE TRANSIENT SPACE-FRACTIONAL DIFFUSION EQUATION: INTEGRAL-BALANCE APPROACH, OPTIMIZATION PROBLEMS AND ANALYZES
ABSTRACT
This paper presents approximate analytical solutions of an initial-boundary value problem of fractional partial differential diffusion equation with spatial Riemann-Liouville fractional derivative. The proposed approximate solutions are based on the concept of a finite penetration depth with the integral-balance method and series expansions of the assumed parabolic profile with undefined exponent. Optimization problems referring to optimal exponents of the assumed parabolic have been developed.
KEYWORDS
PAPER SUBMITTED: 2016-01-13
PAPER REVISED: 2016-03-26
PAPER ACCEPTED: 2016-03-28
PUBLISHED ONLINE: 2016-04-09
THERMAL SCIENCE YEAR
2017, VOLUME
21, ISSUE
Issue 1, PAGES [309 - 321]
- Trujillo, J., Fractional models: Sub and super-diffusive, and undifferentiable solutions, In: B. H. V.Topping, G. Montero, and R.Montenegro (Eds), Innovation in Engineering Computational Technology, Sax-Coburg Publ., Stirling, UK, 2006, pp. 371-402.
- Nigmatullin, R.R., The realization of the generalized transfer equation in a medium with fractal geometry, Physica Status Solidi (B) Basic Research., 133 (1986), 1, 425-430.
- Bakunin ,O.G., Description of the Anomalous Diffusion of Fast Electrons by a Kinetic Equation with a Fractional Spatial Derivative, Plasma Physics Reports, Vol. 30, No. 4, 2004, pp. 338-342.
- Bakunin O.G., Diffusion Equations and Turbulent Transport, Plasma Physics Reports, (2003),11, pp. 955-970.
- Luchko, Yu, Srivastava,H.M., The exact solution of certain differential equations of fractional order by using operational calculus, Comp. Math. Appl., 29 (1995),8, 73-85.
- He,J-H., Approximate analytical solution for seepage flow with fractional derivatives in porous media, Comp. Meth. Appl. Mech. Eng. , 167 (1998),1-2, 57-68.
- Molliq, R.Y., Noorani, M. S. M., Hashim,I., Variational Iteration Method for Fractional Heat- and Wave-Like Equations, Nonlinear Anal., Real World Appl., 10 (2009), 3, pp. 1854-1869..
- Nakagawa, J. ,Sakamoto,K.,Yamamoto, M., Overview to mathematical analysis for fractional diffusion equations-new mathematical aspects motivated by industrial collaboration, J. Math-for-Indust. , 2(2010A-10) 99-108 .
- Das, S., Gupta, P.K., Ghosh, P., An approximate analytical solution of Nonlinear Fractional Diffusion Equation, Appl. Math.Model.,35 (2011) , 8, 4071-4076.
- Wu, G-C: Variational iteration method for solving the time-fractional diffusion equations in porous medium. Chin. Phys. B., 21, (2012a), 22, Article ID 120504; DOI: 10.1088/1674-1056/21/12/120504
- G.-C. Wu, Applications of the Variational Iteration Method to Fractional Diffusion : Local versus Nonlocal Ones, Int. Rev. Chem.Eng., 4 (2012b),5,505-510.
- G.C. Wu, D. Baleanu, Z.G. Deng, S.D. Zeng, Lattice fractional diffusion equation in terms of a Riesz- Caputo difference, Physica A, 438 (2015) 335-339.
- Hashemi, M. S.; Baleanu, D.; Parto-Haghighi, M., A., Lie group approach to solve the fractional Poisson equation, Romanian J.f Phys. , 60 (2015), 9-10, pp:1289-1297.
- Liu F, Shen S, Anh V, Turner I. Analysis of a discrete non-Markovian random walk approximation for the time fractional diffusion equation. ANZIAM J. , 46 (2004), E, pp.488-504.
- Liu F, Zhuang P, Anh, V, Turner I, Burrage K. Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation. Appl Math Comput. , 191 (2007), 1, pp. 12-20.
- Zhuang P, Liu F. Implicit difference approximation for the time fractional diffusion equation. J Appl Math Comput. , 22 (2006),3, pp. 87-99.
- Meerschaert MM, Tadjeran C. Finite difference approximations for two-sided space-fractional partial differential equations. Appl Numer Math. ,56 (2006),1,pp.80-90.
- Basu T S, Wang H. A fast second-order finite difference method for space-fractional diffusion equations. Int J Numer Anal Mod.,9 ( 2012),5, pp. 658-666.
- Akgul, A.; Inc, M.; Karatas, E. ; Baleanu, D., Numerical solutions of fractional differential equations of Lane-Emden type by an accurate technique, Adv Diff. Eqs, Article Number: 220 Published: JUL 16 2015; DOI: 10.1186/s13662-015-0558-8
- Bhrawy, A. H.; Doha, E. H.; Baleanu, D., Hafez, R.M., A highly accurate Jacobi collocation algorithm for systems of high-order linear differential-difference equations with mixed initial conditions ,Math. Meth. Appl. Sci., 38 (2015),14, pp. 3022-3032. doi: 10.1002/mma.3277.
- Podlubny, I, Fractional Differential Equations, Academic Press, New York, 1999
- Benson.D.A., The fractional order governing equations of Levy motions , Water Resour.Res, 36 (2000),6, pp.1413-1423.
- Shlesinger, M.F., West, B.J., Klafter, J., Levy dynamics of enhanced diffusion: Application to turbulence, Phys. Rev. Lett., 38 91987),11, pp.1100-1103.
- Ervin,V.J., Heur, N., Roop, J., Numerical approximation of a time dependent, nonlinear , spacefractional diffusion equation, SIAM J. Num Anal. , 45 (2008),2, pp.572-591.
- Li, C.P., Zhao, Z.G., Chen, Y.Q., Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion, Comp.Math. Appl., 62 (2011),3, pp.855-875.
- Sapora, A., Corneti, P., Carpinteri, A., Diffusion problems on fractional nonlocal media, Centr. Eur. J. Phys., 11 (2013),10, pp. 1255-1261.
- El-Kady, M., El-Sayed, S.M., Salem, H.S., El-Gendi nodal Galerkin method for solving linear and nonlinear partial \fractional space equations, Int. J. Latest Res. Sci. Technol. , 2(2013),6,pp. 10-17.
- Zheng, Y., Zhao, Z., A fully discrete Galerkin method for a nonlinear space-fractional diffusion equation, math. Problems in Engineering, (2011) Article 171620, 20 pages,
- Saadatmandi, A., Deghan, M., A tau approach for solution of the space fractional diffusion equation, Comp. Math. Appl., 62 (2011), 3, pp.1135-1142.
- Nie, N., Huang, J., Wang, W., tTang, Y., Solving spatial-fractional partial differential diffusion equations by spectral method., J. Stat. Comp. Sim. , 84 (2014),6,pp.1173-1189.
- Ray, S.S, A new approach for the application of Adomian decomposition method for the solution of fractional space diffusion equation with insulated ends, Appl. Math. Model. 2002(2008),2, pp. 544-549.
- Ray, S.S, Analytical solution for the space fractional diffusion equation by two-step Adomian decomposition method, Comp.Nonlinear Sci. Num. Simul., 14 92009), 4, pp. 1295-1306.
- Ray, S.S., Chaudhuri, Bera,R.K. , Application of modified decomposition method for the analytical solution of space fractional diffusion equation, Appl. Math. Comput., 196 92008), 1, pp.294-302.
- Huang, F., Liu, F., The space-time fractional diffusion equation with Caputo derivatives, J.Appl. Math & Computing, 19 (2005), 1-2, pp. 179-190.
- Huang, F., Liu, F. , The fundamental solution of the space-time fractional advection-diffusion equation, J.Appl. Math & Computing,19 (2005), 1-2, pp. 339-350.
- Aguilar, J.F.G., Hernadez, M.M., Space-time fractional diffusion-advection equation with Caputo derivative, Abstract and Applied Analysis , 2014, Article ID 283019, 8 pages. Doi: 10.1155/2014/283019
- Goodman, T.R., Application of Integral Methods to Transient Nonlinear Heat Transfer, In: T. F. Irvine and J. P. Hartnett (Eds.), Advances in Heat Transfer, 1 (1964), Academic Press, San Diego, CA, pp. 51-122.
- Hristov,J., The heat-balance integral method by a parabolic profile with unspecified exponent: Analysis and benchmark exercises. Therm. Sci., 13 (2009) ,2, 22-48.
- Hristov,J., Heat-Balance Integral to Fractional (Half-Time) Heat Diffusion Sub-Model, Therm. Sci. 14 (2010) ,2, 291-316.
- Hristov, J., Approximate Solutions to Fractional Subdiffusion Equations: The heat-balance integral method, Europ. Phys. J.-ST, 193 (2011), 1, 229-243.
- Hristov, J., Double Integral-Balance Method to the Fractional Subdiffusion Equation: Approximate solutions, optimization problems to be resolved and numerical simulations, J. Vibration and Control - in press; DOI: 10.1177/1077546315622773
- Hristov,J., Approximate solutions to time-fractional models by integral balance approach, In: C. Cattani, H.M. Srivastava, Xia-Jun Yang (Eds.), Fractals and Fractional Dynamics, De Gruyter Open, 2015 , pp.78- 109.
- Oldham, K.B., Spanier, J., The fractional Calculus, Academic Press, New York, USA, 1974.
- Gradshteyn, I.S., Ryzhik, I.M., . Table of Integrals, Series, and Products. Edited by A. Jeffrey and D. Zwillinger. Academic Press, New York, 7th edition, 2007.
- Ozcag, E., Ege,I., GurcayH., Jolevska-Tuneska, B., On partial derivatives of the incomplete beta function, Appl.Math. Lett., 21 (2008),7, pp. 675-681
- DiDonnato, A.R., Jarnagin, M.P., A method for computing the incomplete beta function ratio for half- integer values of the parameter a and b, Math. Comp., 21 (1967), 100, pp.652-662.
- T.G.Myers, Optimal exponent heat balance and refined integral methods applied to Stefan problem, Int. J. Heat Mass Transfer, 53 (2010), 5-6, pp. 1119-1127.
- Langford , D., The heat balance integral method, Int. J. Heat Mass Transfer, 16 (1973), 12, pp.2424-2428.