International Scientific Journal

External Links


The objective is to optimize the configuration sizes and thermal performance of a multilayer silicon microchannel heat sink by the thermal resistance network model. The effect of structural parameter on the thermal resistance is analyzed by numercal simulation. Taking the thermal resistance as an objective function, a nonlinear and multi-constrained optimization model are proposed for the silicon microchannel heat sink in electronic chips cooling. The sequential quadratic programming (SQP) method is used to do the optimization design of the configuration sizes of the microchannel. For the heat sink with the size of 20mm×20mm and the power of 400 W, the optimized microchannel number, layer, height and width are 40 and 2, 2.2mm and 0.2mm, respectively, and its corresponding total thermal resistance for whole microchannel heat sink is 0.0424 K/W.
PAPER REVISED: 2015-07-01
PAPER ACCEPTED: 2015-08-23
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2016, VOLUME 20, ISSUE Issue 6, PAGES [2001 - 2013]
  1. Lee D. Y. and Vafai, K., Comparative Analysis of Jet Impingement and Microchannel Cooling for High Heat Flux Applications. International Journal of Heat and Mass Transfer. 42 (1999), pp: 1555-1568
  2. Khaled A. R. A., Vafai, K., Cooling Augmentation Using Microchannels with Rotatable Separating Plates, International Journal of Heat and Mass Transfer. 54 (2011), pp: 3732-3739
  3. Xu, S. L., Wang, W., Fang, K., Wong C. N., Heat Transfer Performance of a Fractal Silicon Microchannel Heat Sink Subjected to Pulsation Flow, International Journal of Heat and Mass Transfer. 81 (2015), pp:33-40
  4. Lin, Y. Y., Chen, Zhang, X. X., and Wang, X. D., Optimization of Geometry and Flow Rate Distribution for Double-layer Microchannel Heat Sink, International Journal of Thermal Sciences. 78 (2014) , pp:158-168
  5. Khadrawi, A. F., Othman, A., Al-Nimr, M. A., Transient Free Convection Fluid Flow in a Vertical Microchannel as Described by the Hyperbolic Heat Conduction Model, International Journal of Thermophysics. 26 (2005), pp: 905-918
  6. Xu, S. L., Wang W. J., Guo Z. K., Hu X. L., Guo W., A Multi-channel Cooling System for Muiltiple Heat Source, Thermal Science, 2014, doi: 10.2298/TSCI140313123X
  7. Kleiner, M. B., Kuehn, S. A. and Haberger, K., High Performance Forced Air Cooling Scheme Employing Micro Channel Heat Exchangers, IEEE Transactions on Components, Packaging and Manufacturing Technology Part A. 18 (1995), pp: 795-804
  8. Tuckerman, D. B., and Pease, R. F. W., High-performance Heat Sinking for VLSI, IEEE Electron Device Letter. 2 (1981), pp:126-129
  9. Vafai, K., and Zhu, L., Analysis of Two-layered Microchannel Heat Sink Concept in Electronic Cooling, International Journal of Heat and Mass Transfer. 42 (1999), pp: 2287-2297
  10. Shao, B. D., Sun, Z., Wang, L., Optimization Design of Microchannel Cooling Heat Sink, International Journal of Numerical Methods for Heat and Fluid Flow. 17 (2007), pp: 628-637
  11. Knight, R. W., Hall, D., Goodling, J., Jaeger, R. C., Heat Sink Optimization with Application to Microchannels, IEEE Transactions on Components, Hydrids and Manufacturing Technology. 15 (1992), 5, pp: 832-42
  12. Tuckerman, D. B., Pease, R. F. W., Heat-Transfer Microstructures for Integrated Circuits, PhD Dissertation, Stanford University, 1984
  13. Lorenzini, G., Moretti, S., Bejan's Constructal Theory and Overall Performance Assessment The Global Optimization for Heat Exchanging Finned Modules, THERMAL SCIENCE, 18 (2014), 2, pp. 339-348
  14. Bejan, A., Almogbel, M., Constructal T-Shaped Fins, International Journal of Heat and Mass Transfer, 43 (2000), 12, pp. 2101-2115
  15. Sanaye, S., Modarrespoor, D., Thermal-Economic Multi-Objective Optimization of Heat Pipe Heat Exchanger for Energy Recovery in HVAC Application Using Genetic Algorithm, THERMAL SCIENCE, 18 (2014), 2, pp. S375-S391
  16. Wei, X. J., and Joshi, Y., Stacked Microchannel Heat Sinks for Liquid Cooling of Microelectronic Components, Journal of Electronic Packaging, 126 (2004), pp: 60-66
  17. Wei, X. J., and Joshi, Y., Optimization Study of Stacked Micro-Channel Heat Sinks for Micro-Electronic Cooling, IEEE Transactions on Components and Packaging Technologies, 26 (2003), pp: 55-61
  18. Skandakumaran, P., Ortega, A., Jamal-Eddine, T., Vaidyanathan, R., Multi-layered SiC Microchannel Heat Sinks-modeling and Experiment, Thermal and Thermomechanical Phenomena in Electronic Systems. ITHERM'04. The Ninth Intersociety Conference on. IEEE, (2004), pp: 352-360
  19. Chong, S. H., Ooi, K. T. and Wong, T. N., Optimization of Single and Double Layer Counter Flow Microchannel Heat Sinks, Appl. Therm. Eng. 22 (2002), pp: 1569-1585
  20. Karathanassis, I. k., Papanicolaou, E., Belessiotis, V., Bergeles, G., Multi-objective Design Optimization of Micro Heat Sink for Concentrating Photovoltaic/ Thermal (CPVT) Systems Using a Genetic Algorithm, Appl. Therm. Eng., 59 (2013),1-2, pp: 733-744
  21. Hu, G. X., Xu, S. L., Optimization Design of Microchannel Heat Sink Based on SQP Method and Numerical Simulation, Applied Superconductivity and Electromagnetic Devices, (2009), pp: 89-92
  22. Lei, N., Skandakumaran P., and Ortega A., Experiments and Modeling of Multilayer Copper Minichannel Heat Sinks in Single-phase Flow, Thermal and Thermomechanical Phenomena in Electronics Systems. ITHERM,06 (2006), pp: 9-18
  23. Kim, S. J., Kim D., Forced Convection in Microsructures for Electronic Equipment Cooling, Journal of Heat Transfer, 121 (1999), pp: 639-645
  24. Wu, H. Y., and Cheng, P., An Experimental Study of Convective Heat Transfer in Silicon Microchannels with Different Surface Conditions. International Journal of Heat and Mass Transfer. 46 (2003), pp: 2547-56
  25. Biber, R. C., and Belady, L. C., "Pressure Drop Prediction for Heat Sinks: What Is the Best Method?'', Advances in Electronic Packaging, Proceedings of the Pacific Rim/ASME International Intersociety Electronic & Photonic Packaging Conference, Interpack '97, 2, pp. 1829-1835

© 2024 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence