THERMAL SCIENCE

International Scientific Journal

Authors of this Paper

External Links

MHD FLOW AND HEAT TRANSFER FOR MAXWELL FLUID OVER AN EXPONENTIALLY STRETCHING SHEET WITH VARIABLE THERMAL CONDUCTIVITY IN POROUS MEDIUM

ABSTRACT
An analysis is made to study MHD flow and heat transfer for Maxwell fluid over an exponentially stretching sheet through a porous medium in the presence of non-uniform heat source/sink with variable thermal conductivity. The thermal conductivity is assumed to vary as a linear function of temperature. The governing partial differential equations are transformed into ordinary differential equations using similarity transformations and then solved numerically using implicit finite difference scheme known as Keller-box method. The effect of the governing parameters on the flow field, skin friction coefficient, wall temperature gradient (in prescribed surface temperature case), wall temperature (in prescribed heat flux case) and Nusselt number are computed, analyzed and discussed through graphs and tables. The present results are found to be in excellent agreement with previously published work [1,2] on various special cases of the problem.
KEYWORDS
PAPER SUBMITTED: 2012-05-30
PAPER REVISED: 2013-08-02
PAPER ACCEPTED: 2013-08-27
PUBLISHED ONLINE: 2013-09-22
DOI REFERENCE: https://doi.org/10.2298/TSCI120530120S
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2014, VOLUME 18, ISSUE Supplement 2, PAGES [S599 - S615]
REFERENCES
  1. El-Aziz, M. A., Viscous dissipation effect on mixed convection flow of a micropolar fluid over an exponentially stretching sheet. Can. J. Phys. 87(2009): 359-368.
  2. Magyari, E., Keller, B., Heat and mass transfer in the boundary layers on an exponentially stretching continuous surface, J.Phys. D Appl. Phys.32 (1999) 577-585.
  3. Chen, C. K., Char, M. I., Heat transfer of a continuous stretching surface with suction or blowing, J. Math. Anal. Appl. 135 (1988) 568-580.
  4. Sakiadis, B. C., Boundary layer behaviour on continuous solid surface: I - Boundary layer equations for two dimensional and axisymmetric flows, AIChE. J. 7(1961)26-28.
  5. Sakiadis, B. C., Boundary layer behaviour on continuous solid surface: II - Boundary layer on a continuous flat surface AIChE.J.7 (1961) 221-225.
  6. Sarpakaya, T., Flow of non-Newtonian fluids in a magnetic field, AIChE J.7 (1961) 324-328.
  7. Vajravelu, K., Viscous flow over a nonlinearly stretching sheet, Appl. Math. Comput. 124, 281-288 (2001).
  8. Cortell, R., Viscous flow and heat transfer over a nonlinearly stretching sheet, Appl Math Comput. 184. (2007), 864-873
  9. Cortell, R., Effects of viscous dissipation and radiation on the thermal boundary layer over a nonlinearly stretching sheet. Phys. Lett. A,( 2008) 372: 631-636
  10. Sajid, M., Hayat, T., Asghar, S., Vajravelu, K., Analytic solution for axisymmetric flow over a nonlinearly stretching sheet. Archive of Applied Mechanics, 78(2) (2008) 127-134.
  11. Akyildiz, F. T., Siginer, D. A., Galerkin-Legendre spectral method for the velocity and thermal boundary layers over a non-linearly stretching sheet. Nonlinear Analysis: Real World Applications, 11(2) (2010) 735-741.
  12. Van Gorder, R. A., Vajravelu, K., A note on flow geometries and the similarity solutions of the boundary layer equations for a nonlinearly stretching sheet. Archive of Applied Mechanics, 80(11) (2010) 1329-1332.
  13. Akyildiz, F. T., Siginer, D. A., Vajravelu, K., Cannon, J. R., Van Gorder, R. A., Similarity solutions of the boundary layer equations for a nonlinearly stretching sheet. Mathematical Methods in the Applied Sciences, 33(5) (2010) 601-606.
  14. Kumaran, V., Ramanaiah, G., A note on the flow over a stretching sheet, Acta Mech. 116 (1996) 229-233.
  15. Elbashbeshy, E. M. A., Heat transfer over an exponentially stretching continuous surface with suction, Arch. Mech. 53 (6) (2001) 643-651.
  16. Khan, S. K., Sanjayanand, E., Viscoelastic boundary layer flow and heat transfer over an exponentially stretching sheet, Int. J. Heat Mass Transfer 48 (2005) 1534-1542.
  17. Mukhopadhyay, S., Gorla, R. S. R., Effects of partial slip on boundary layer flow past a permeable exponential stretching sheet in presence of thermal radiation. Heat and Mass Transfer 48.10 (2012): 1773-1781.
  18. Andersson, H. I., MHD flow of a viscoelastic fluid past a stretching surface, Acta Mech. 95 (1992) 227-230.
  19. Siddheshwar, P. G., Mahabaleshwar, U. S., Effect of radiation and heat source on MHD flow of a viscoelastic liquid and heat transfer over a stretching sheet, Int. J. Non-Linear Mech. 40 (2005) 807-820.
  20. Singh, V., Agarwal, S., Heat transfer in a second grade fluid over an exponentially stretching sheet through porous medium with thermal radiation and elastic deformation under the effect of magnetic field, Int. l J. Applied Mathematics and Mechanics 8(4): 41 - 63, 2012
  21. Eldabe, Nabil. T. M., Mohamed, Mona. A. A., Heat and mass transfer in hydromagnetic flow of the non-Newtonian fluid with heat source over an accelerating surface through a porous medium, Chaos, Solutions and Fractals 13 (2002) 907-917.
  22. Vajravelu, K., Flow and Heat Transfer in a saturated porous medium, ZAMM 74 (12) 605-614 (1994).
  23. Subhas, A., Veena, P., Viscoelastic Fluid flow and heat transfer in a porous medium over a stretching sheet, Int. J. Nonlinear Mech. 33 (1998) 531-540.
  24. Abel, M. S., Mahesha, N., Heat transfer in MHD viscoelastic fluid flow over a stretching sheet with variable thermal conductivity, non-uniform heat source and radiation, Appl. Math. Modelling 32(2008) 1965-1983.
  25. Chiam, T. C., Heat transfer with variable conductivity in a stagnation-point flow towards a stretching sheet, Int. Commun. Heat Mass Transfer 23 (1996) 239-248.
  26. Chiam, T. C., Heat transfer in a fluid with variable thermal conductivity over a linearly stretching sheet, Acta. Mech. 129 (1998) 63-72.
  27. Eldahab, A. E. M., Aziz, M. A., Blowing/suction effect on hydromagnetic heat transfer by mixed convection from an inclined continuously stretching surface with internal heat generation/absorption Int. J. of Therm. Sci. 43(7) -2004, pp. 709-719
  28. Fosdick, R. L., Rajagopal, K. R., Anomalous features in the model of second-order fluids, Arch. Ration. Mech. Anal. 1979; 70:145
  29. Aliakbar, V., Alizadeh-Pahlavan, A., Sadeghy, k., The influence of thermal radiation on MHD flow of Maxwellian fluids above stretching sheets, Comm. Non-Linear Sci. and Numerical simulation 14(2009) 779-794.
  30. Sanjayanand, E., Khan, S. K., On heat and mass transfer in a viscoelastic boundary layer flow over an exponentially stretching sheet, Int. J. Therm. Sci. 45 (2006) 819-828.
  31. Partha, M. K., Murthy, P. V. S. N., Rajasekhar G. P., Effect of viscous dissipation on the mixed convection heat transfer from an exponentially stretching surface. Heat and mass transfer 41.4 (2005): 360-366.
  32. Nadeem, S., Zaheer, S., Fang, T., Effects of thermal radiation on the boundary layer flow of a Jeffrey fluid over an exponentially stretching surface. Numerical Algorithms 57.2 (2011): 187-205.
  33. Nadeem, S., Lee, C., Boundary layer flow of nanofluid over an exponentially stretching surface. Nanoscale Research Letters 7 (2012): 94.
  34. Nag, P. K., Heat and mass transfer, Tata Mc Graw Hill, New Delhi, India, 2008.
  35. Rehman, M. M., Rehman, M. A., Samad, M. A., Alam, M. S., Heat transfer in a micropolar fluid along a non-linear stretching sheet with a temperature-dependent viscosity and variable surface temperature, Int. J. of thermophysics 30(5) (2009) 1649-1670.
  36. Rehman, M. M., Aziz, A., Al-lawatia, M. A., Heat transfer in micropolar fluid along an inclined permeable plate with variable fluid properties, Int. J. Therm. Sci. 49 (2010) 993-1002.
  37. Pantokratoras, A., Laminar free-convection over a vertical isothermal plate with uniform blowing or suction in water with variable physical properties, Int. J. Heat Mass Transfer 45 (2002) 963-977.
  38. Pantokratoras, A., Further results on the variable viscosity on flow and heat transfer to a continuous moving flat plat, Int. J. Eng. Sci. 42 (2004) 1891-1896.
  39. Chapra., Canale., Numerical Methods for Engineers, Tata McGraw-Hill, New Delhi, India, 1990
  40. Keller, HB., Numerical methods for two-point boundary value problems, Dower, NewYork, USA, 1992.

2025 Society of Thermal Engineers of Serbia. Published by the VinĨa Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence