International Scientific Journal

Authors of this Paper

External Links


This study examines the performance of one point closure turbulence models in predicting of heat and momentum transfer of impinging flows. The scope of this paper is limited to impinging jet on a moving wall and heat transfer. The impinging distance is fixed to 8 thickness of the nozzle (8e) for this study. Two parameters are considered: the jet exit Reynolds number (10000≤Re≤25000) and the jet-surface velocity ratio (0≤Rsj≤4). the flow field structure at a given surface-to-jet velocity ratio is independent of the jet Reynolds number, a slight modification of the flow field is observed for low surface-to-jet velocity ratio (Rsj<0.25) whereas at higher ratios Rsj>0.25, the flow field is significantly modified. Good agreement with experimental results is obtained for surface-to-jet velocity ratio 0≤Rsj≤2. the purpose of this paper is to consider the case of higher of surface-to-jet velocity Rsj>2. A further study of heat transfer is achieved and shows that the stagnation points the local heat transfer coefficient have a maximum value. The local Nusselt number at the impinging region tends to decrease significantly when Rsj≤1.5. The evolution of average Nusselt number is correlated according to the surface-to-jet velocity ratios for each Reynolds number.
PAPER REVISED: 2012-06-15
PAPER ACCEPTED: 2012-06-15
CITATION EXPORT: view in browser or download as text file
THERMAL SCIENCE YEAR 2014, VOLUME 18, ISSUE Issue 4, PAGES [1259 - 1271]
  1. Abramovich, G. N., The theory of turbulent jets. MIT Press, Cambridge, Massachusetts, USA, 1963
  2. Rajaratnam, N., Turbulent jets, Elsevier Scientific Publishing Company, 1976
  3. Gutmark, E., Wygnanski, I., The planar turbulent jet. J. Fluid Mech, 73(1976), 3, pp. 465-495
  4. Ramaprian, B. R., Chandrasekhara, M.,LDAmeasurements in plane turbulent jets, J. Fluids Eng., 107(1985), pp. 264-271
  5. Xu, P., Mujumdar, A. S., Poh, H.J., Yu, B., Heat transfer under a pulsed slot turbulent impinging jet at large temperature differences, Thermal Science, 14 (2010), 1, pp. 271- 281
  6. Issa, R. J., Heat transfer performance of oil jet impinging on a downward facing stainless steel plate, 15(2011), Thermal Science, 2, pp. 397-408
  7. Subba Raju, K., Schltinder,E.U.,Heat transfer between an impinging jet and a continuously moving surface, Wärme-und Stoffübertragung, 10 (1977), pp. 131-136
  8. Van Heiningen, A.R.P., Mujumdar, A.S., Douglas, W. J.M., Flow and heat transfer characteristics of turbulent slot impinging on a moving wall, 1st symposium Turbulent Shear Flow, Penn-State University, College Park, 1 (1977) 3.9-3.15
  9. Gardon. R.,Akfirat, J.C., Heat transfer characteristics of impinging two-dimensional air jets, Journal heat transfer, Transactions of the ASME, (1966), pp. 101 -108
  10. Senter J., Solliec C.,Flow field analysis of a turbulent slot air jet impinging on a moving flat surface, International Journal of Heat and Fluid Flow, 28(2007), 4, pp. 708-719
  11. Huang, P. G., Mujumdar, A.S., Douglas, W.J.M., Numerical prediction of fluid flow and heat transfer under a turbulent impinging slot jet with surface motion and crossflow,Transactions of the ASME, 33(1984), pp. 1-8.
  12. Zumbrunnen, D. A., Convective Heat and mass-transfer in the stagnation region of a laminar planar jet impinging on a moving surface, Journal of Heat Transfer, 113 (1991), pp. 563-570.
  13. Chen, J., Wang, T., Zumbrunnen, D.A., Numerical analysis of convective heat transfer from a moving plate cooled by an array of submerged planar jets, Numerical Heat Transfer, 26 (1994), pp. 141-160
  14. Zumbrunnen, D. A., Incropera, F. P., Viskanta, R. A., Laminar boundary layer model of heat transfer due to a nonuniform planer jet impinging on a moving plate, Wärme-und Stoffübertragung, 27 (1992), pp. 311-319
  15. Chattopadhyay, H., Biswas, G., Mitra, N. K., Heat transfer from a moving surface due to impinging slot jets, Journal of Heat Transfer, 124 (2002), pp. 433-440
  16. Chattopadhyay, H., Saha, S. K., Simulation of laminar slot jets impinging on a moving surface, Journal of Heat Transfer, 124 (2002), pp. 1049-1055
  17. Chattopadhyay, H.,Saha, S. K., Turbulent heat transfer from a slot jet impinging on a moving plate, International Journal of Heat and Fluid Flow, 24 (2003), pp. 685-697
  18. Senter. J., Analyse expérimentale et numérique des écoulements et des transferts de chaleur convectifs produits par un jet plan impactant une plaque plane mobile, Ph. D. thesis, Université de Nantes, France, 2006
  19. Sharif, M. A. R., Banerjee. A., Numerical analysis of heat transfer due to confined slot-jet impingement on a moving plate, Applied Thermal Engineering, 29 (2009), pp. 532-540
  20. Aldabbag, L. B. Y., Mohamad. A A., A three dimensional numerical simulations of impinging jet arrays on a moving plate, International journal of heat and mass transfer, 52 (2009), pp. 4894-4900.
  21. Aldabbag, L. B. Y., Mohamad. A A., Effect of jet-to-plate spacing in laminar array jets impinging, Heat mass transfer, 43 (2007), pp. 265-273
  22. Wilcox. D. C. Turbulence Modeling for CFD.DCW Industries, Inc., La Canada, California, 1998
  23. Patankar S. V., Numerical heat transfer and fluid flow, Series in computational Methods in Mechanics and Thermal Sciences, Hemisphere Publ.Corp., 1980
  24. Beaubert. F., Viazzo, S., Large eddy simulations of plane turbulent impinging jets at moderate Reynolds numbers, International Journal of Heat and Fluid Flow, 24 (2003), pp. 512-519

© 2024 Society of Thermal Engineers of Serbia. Published by the Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, Belgrade, Serbia. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International licence