THERMAL SCIENCE
International Scientific Journal
A STUDY ON THE MIXED CONVECTION BOUNDARY LAYER FLOW AND HEAT TRANSFER OVER A VERTICAL SLENDER CYLINDER
ABSTRACT
In this investigation, the series solutions of mixed convection boundary layer flow over a vertical permeable cylinder are constructed. Two types of series as well numerical solutions are presented by choosing exponential and rational bases. The resulting differential system are solved by employing homotopy analysis method (HAM) and Pade technique which have been proven to be successful in tackling nonlinear problems. We offer various verifications of the solutions by comparing to existing, documented results and also mathematically, through reduction of sundry parameters. The convergence of the series solutions have been discussed explicitly. Comparison with existing results reveal that the series solutions are not only valid for large (aiding flow) but also for small values (opposing flow) of λ and the dual solutions do not obtain in both cases.
KEYWORDS
PAPER SUBMITTED: 2012-09-23
PAPER REVISED: 2012-04-26
PAPER ACCEPTED: 2012-04-27
THERMAL SCIENCE YEAR
2014, VOLUME
18, ISSUE
Issue 4, PAGES [1247 - 1258]
- Vafai, K., Handbook of Porous Media (Second Edition), Taylor & Francis, USA, 2005
- Vafai, K., Porous Media: Applications in Biological Systems and Biotechnology, Taylor & Francis, USA, 2010.
- Tan, W. C., Masuoka, T., Stokes' first problem for a second grade fluid in a porous half space with heated boundary, Int. J. Nonlinear Mech. 40 (2005), pp. 512-522
- Tan, W. C., Masuoka, T., Stability analysis of a Maxwell fluid in a porous medium heated from below. Phys. Lett. A, 360 (2007), pp. 454-460
- Fetecau, C., Hayat, T., MHD transient flows in a channel of rectangular cross-section with porous medium, Physics letters A, 369 (2007). pp. 44-54
- Hayat, T., Mambili-Mamboundou, H., Mahomed, F. M., Unsteady Solutions in a Third-Grade Fluid Filling the Porous Space, Mathematical Problems in Engineering, 2008 (2008), pp. 139560-13
- Pop, I., Ingham, D. B., Convective Heat Transfer, Pergamon, Amsterdam, 2001
- Mahmood, T., Merkin, J. H., Similarity solutions in axisymmetric mixed convection boundary-layer flow, J. Eng. Math. 22 (1988), pp. 73-92
- Ridha, A., Aiding flows non-unique similarity solutions of mixed convection boundary-layer equations, J. Appl. Math. Phys. 47 (1996), pp. 341-352
- Ishak, A., Nazar, R., Pop, I., The effects of transpiration on the boundary layer flow and heat transfer over a vertical slender cylinder, Int. J. Non-Linear Mech. 42 (2007), 1010-1017
- Liao, S. J., Beyond perturbation: introduction to the homotopy analysis method. Boca Raton: Chapman & Hall/CRC Press, 2003
- Xu, H., Liao, S. J., Pop, I., Series solutions of unsteady boundary layer flow of a micropolar fluid near the forward stagnation point of a plane surface, Acta Mech. 184 (2006), pp. 87-101.
- Hayat, T., Ellahi, R., Asghar, S., Modelling of flow and heat transfer in a generalized second grade fluid, International Journal of Applied Mechan-ics. & Engineering, 13 (2008), pp. 101-121
- Ellahi, R., Ariel, P. D., Hayat, T., Asghar, S., Effect of heat transfer on a third grade fluid in a channel, International Journal of Numerical Method in Fluids, 63 (2010), pp. 847-859
- Ellahi, R., Riaz, A., Analytical solution for MHD flow in a third grade fluid with variable viscosity, Mathematical and Computer Modelling, 52 (2010), pp. 1783-1793
- Ellahi, R., Afzal, S., Effect of variable viscosity in a third grade fluid with porous medium. An analytical solution. Commun Nonlinear Sci Numer Simulation 14 (2009), 2056-2072
- Nadeem, S., Hayat, T., Abbasbandy, S., Ali, M., Effects of partial slip on a fourth-grade fluid with variable viscosity: An analytic solution, Nonlinear Analysis: Real World Applications, 11 (2010), pp. 856-868
- Abbasbandy, S., Yürüsoy, M., Pakdemirli, M., The analysis approach of boundary layer equations of power-law fluids of second grade, Z. Natur-forsch. A 63(a) (2008) 564-570.
- J. Cheng, S. J. Liao, R. N. Mohapatra, K. Vajravelu, Series solutions of nano boundary layer flows by means of the homotopy analysis method, J. Math. Anal. Appl. 343 (2008), pp. 233-245
- Abbasbandy, S., Homotopy analysis method for generalized Benjamin-Bona-Mahony equation, Z. Angew. Math. Phys. (ZAMP) 59 (2008), pp. 51-62.
- Ellahi, R., Abbasbandy, S., Hayat, T., Zeeshan, A., On comparison of series and numerical solutions for second Painlevé equation, Numerical Methods for Partial Differential Equations, 26 (2010), pp. 1070-1078
- Abbasbandy, S., Hayat, T., M. Mahomed, F. M., Ellahi, R., On comparison of exact and series solutions for thin film flow of a third-grade fluid, International Journal for Numerical Methods in Fluids, 61, (2009), pp. 987-994
- Xu, H., Liao, S. J., Pop, I., Series solutions of unsteady free convection flow in the stagnation-point region of a three-dimensional body, Int. J. Therm. Sci. 47 (2008), pp. 600-608
- Ellahi, R., Zeeshan, A., A study of pressure distribution of a slider bearing lubricated with second grade fluid, Numerical Methods for Partial Differ- ential Equations, 27 (2011), pp. 1231-1241
- Liao, S. J., A general approach to get series solution of non-similarity boundary-layer flows, Commun. Nonlinear Sci. Numer. Simulat. 14 (2009), pp 2144-2159
- Ellahi, R., Effects of the slip boundary condition on non-Newtonian flows in a channel, Communication in Nonlinear Science and Numerical Simulations, 14 (2009), pp. 1377-1384
- Gebhart, B., Jaluria, Y., Mahajan, R. L., Samakia, B., Buoyancy Induced Flows and Transport, Hemisphere, New York, 1988
- Rajagopal, K. R., Ruzicka, M., Srinivasa, A. R., On the Oberbeck-Boussinesq approximation, Math. Models Methods Appl. Sci. 6 (1996), pp. 1157-1167
- Van Gorder, R. A., Vajravelu, K., On the selection of auxiliary functions, operators, and con-vergence control parameters in the application of the Homotopy Analysis Method to nonlinear differential equations: A general approach, Commun. Nonlinear Sci. Numer. Simul. 14 (2009), pp. 4078-4089
- Liao, S. J., Notes on the homotopy analysis: Some de
nitions and theorems, Commun. Nonlinear Sci. Numer. Simulat. 14 (2009), pp. 983-997
- Ramachandran, N., Chen, T. S., Armaly, B. F., Mixed convection in stagnation flows adjacent to a vertical surface, ASME J. Heat Transfer 110 (1988), pp. 373-377
- Hassanien, I. A., Gorla, R. S., Combined forced and free convection in stagnation flows of micropolar fluids over vertical non-isothermal surface, Int. J. Eng. Sci. 28 (1990), pp. 783-792.
- Lok, Y. Y., Amin, N., Pop, I., Unsteady mixed convection flow of a micropolar fluid near the stagnation point on a vertical surface, Int. J. Therm. Sci. 45 (2006), pp. 1149-1157
- Ishak, A., Nazar, R., Pop, I., Dual solutions in mixed convection flow near a stagnation point on a vertical porous plate, Int. J. Thermal Sci. 47 (2008), pp. 417-422.
- Mahmood, T., Merkin, J. H., Similarity solutions in axisymmetric mixed-convection boundary-layer flow, J. Eng. Math. 22 (1988), pp. 73-92.